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Abstract

Future pandemics could arise from several sources, notably, Emerging Infectious Diseases
(EID); and lab leaks from High Containment Biological Laboratories (HCBL). Recent
advances in infectious disease, information technology and biotechnology provide
building blocks to reduce pandemic risk if deployed intelligently. However, the global
nature of infectious diseases, distribution of HCBLs, and increasing complexity of
transmission dynamics due to travel networks, make it difficult to determine how to best
deploy mitigation efforts. Increasing understanding of the risk landscape posed by EID
and HCBL lab leaks could improve risk reduction efforts.

The presented paper develops a country level spatial network Susceptible Infected
Removed (SIR) model based on global travel network data and relative risk measures of
potential origin sources, EID and lab leaks from Biological Safety Level 3+ and 4 labs, to
explore expected infections over the first 30 days of a pandemic. Model outputs indicate
that for EID and lab leaks India, the US and China are most impacted at day 30. For EID,
expected infections shift from high EID origin potential countries at day 10 to the US,
India and China, while for lab leaks the US and India start with high lab leak potential.
With respect to model uncertainties and limitations, results indicate several large wealthy
countries are influential to pandemic risk from both EID and lab leaks indicating high
leverage points for mitigation efforts.

1. Introduction

This paper explores the role of global travel networks in propagating risk from two origin
sources for Pandemic Potential Pathogens (PPP): Emerging Infectious Disease (EID), and
Lab leaks, escape of pathogens from Biological Safety Level 3+ and 4 laboratories, through
the development of a spatial network Susceptible Infectious Removed (SIR) model.

Novel infectious disease has historically been a major cause of human harm. Salient
examples include the black death which is argued to have caused 200M deaths over three
major outbreaks (Perry & Fetherston, 1997) and the Spanish flu killing between 17.4
million (Spreeuwenberg et al., 2018) and 50 million (Johnson & Mueller, 2002) people or
between 0.95% and 2.7% of the population. Pandemics, that is infectious disease outbreaks

1 Authors made equivalent significant contributions
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that spread globally, are considered a potential source of existential risk (Millett &
Snyder-Beattie, 2017). COVID-19, a comparatively mild pathogen, highlights humanity's
ongoing vulnerability to infectious disease and the potential damage that can be caused
by pandemics. Estimates of existential risk from natural pandemics are considerable
ranging from a 1 in 2000 to 1 in 20000 per century, though these estimates should be
considered with skepticism due to methodological issues and challenges in estimating the
probability of low frequency events (Millett & Snyder-Beattie, 2017; Sandberg & Bostrom,
2008). Estimates of existential risk from pandemics become considerably higher if
engineered pathogens are considered, with order of magnitude estimates being 1 in 30
per century (Ord, 2020).

Historically, transmission of novel pathogens from animals to humans has been the major
source of Emerging Infectious Disease (EID) and consequently pandemic risk. More
recently human interaction with Pandemic Potential Pathogens (PPP) in laboratory
settings for purposes such as diagnostic testing, vaccine development and development of
biological weapons has yielded a new reservoir of PPP. Though most work with PPP is
undertaken in designated Biological Safety Level (BSL) 3 and 4 laboratories, highly secure
laboratory facilities specially developed to prevent high risk pathogens from being
released into the environment, many records of pathogen escape, henceforth referred to
as lab leaks, from BSL 3 and 4 facilities exist. Notable examples of lab leaks include: The
2007 UK outbreak of Foot and Mouth Disease from the Pirbright facility a BSL 4 labs
(DEFRA, 2008), and Venezuelan equine encephalitis virus (VEEV) in 1995 which was
identical to a lab strain from 1963 (Brault et al., 2001). Consequently BSL 3 & 4 labs are a
significant source of pathogen risk, arguably of higher concern than EID due to by design
selecting for high risk pathogens and being located in urban areas (Merler et al., 2013).

In addition, modern societies global air travel networks facilitate rapid dispersion of
pathogens (Holmes et al., 2018), further increasing the risk posed from the emergence of
new diseases or lab leaked pathogens. Even if a particular country isn't likely to give rise
to a new emerging infectious disease or be the source of a lab leak, it might be strongly
connected to other countries that do face such a risk.

Reducing the risk of extinction or long term impacts from pandemics should be
considered a high priority (Millett & Snyder-Beattie, 2017), but which countries are most
exposed to risk from future pandemics? Which countries contribute the most to creating
such risks? And how given this information should one prioritize mitigation efforts?
Without sufficient understanding of pandemic risk, one could go about selecting
interventions and preventive measures in a way that assumes risk is uniformly
distributed. However, pandemic risk is clearly not uniformly distributed. As such, a good
enough estimate of how risk varies according to geographical and socio-economic factors
would allow targeting interventions and preventive measures where they would help the
most. These are difficult but important questions, whose answer can be used to prioritize
how limited resources are used for mitigation efforts.

This paper contributes to understanding of pandemic risk by exploring the interaction of
travel networks with two sources of PPP, EID and lab leaks from BSL 3+ and 4 labs. This is
achieved by developing a spatial network Susceptible Infected Removed (SIR) model that
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uses a relative distribution of risk of outbreak from two potential sources of PPP, EID and
lab leaks, to explore how risk propagates through travel networks. Knowledge of how a
hypothetical pathogen may be distributed globally provides information for prioritizing
mitigation efforts for pandemics e.g. high priority locations for screening of people who
present symptoms that cannot be diagnosed easily (Holmes et al., 2018). To our knowledge
there has been no attempt to aggregate origin risk from EID and lab leaks with travel
networks in assessing pandemic risk. Overlaying the risk distribution EID and lab leak
sources can shed light on commonalities in risk propagation between different origin
sources to better target intervention deployment.

The presented model is a coarse grained first pass at assessing the distribution of
pandemic risk. Given the complexity of disease dynamics and the associated challenge of
prioritization, it is perhaps too early to tell whether results are robust enough to be
actionable. It is the authors hope that this work can provide some preliminary insights,
and direct future work to reduce the uncertainties faced in understanding the highly
complex phenomena involved in future risks from pandemics.

2. Methods

To investigate the role of travel networks a Susceptible Infected Removed spatial network
model using countries as nodes was developed, where the network is derived from travel
data. The model is run with each country as a pandemic origin source for a set of disease
parameters. Outputs of the model are then scaled according to the relative risk of origin
in a given country. Origin sources are EID, or lab leak. The SIR model structure, method of
aggregation and EID and lab leak origin potential measures are described in more detail
below.

2.1 SIR model overview

The model is an adaptation of the SIR network model over cities described by Muroya et
al. 2013, chosen as inspiration due to its simplicity (Muroya et al., 2013). The model
considers the world population 𝑁, partitioned into 𝑛 countries labeled by 𝑗=1,2,...,𝑛 . The
population within the 𝑗th state is partitioned into susceptibles (𝑆𝑗), infectives (𝐼𝑗), and
removed (recovered and dead) (𝑅𝑗) .

The equations that describe the system are as follows:

𝑑𝑆𝑖𝑑𝑡 = − 𝑆𝑖 𝑗≠𝑖∑ 𝑚𝑖𝑗 − 𝑆𝑖β𝑖 𝐼𝑖𝑁𝑖 + 𝑗≠𝑖∑ 𝑚𝑗𝑖𝑆𝑗   (1)
In words, the change in 𝑆𝑖 depends on howmany susceptibles migrate out, how many
susceptibles get infected, and howmany susceptibles from other countries migrate in.

𝑑𝐼𝑖𝑑𝑡 = 𝑆𝑖β𝑖 𝐼𝑖𝑁𝑖  − 𝐼𝑖γ𝑖 − 𝐼𝑖 𝑗≠𝑖∑ 𝑚𝑖𝑗 + 𝑗≠𝑖∑ 𝑚𝑗𝑖𝐼𝑗  (2)
2
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In words, the change in 𝐼𝑖 depends on howmany susceptibles get infected, how many
infectives removed , how many infectives migrate out and howmany infectives from2

other countries migrate in.

𝑑𝑅𝑖𝑑𝑡 = γ𝑖𝐼𝑖 − 𝑅𝑖 𝑗≠𝑖∑ 𝑚𝑖𝑗 + 𝑗≠𝑖∑ 𝑚𝑗𝑖𝑅𝑗  (3)
In words, the change in 𝑅𝑖 depends on howmany infectives are removed, how many
removed migrate out, and howmany removed from other countries migrate in.

Notation:
is the rate of travel from 𝑖 to 𝑗 at each time step;𝑚𝑖𝑗

is the rate at which infected people in country 𝑖 are removed from the diseaseγ𝑖
pool;
is the transmission rate, which indicates the rate at which individuals areβ𝑖 𝑆𝑖

infected by each individual in .𝐼𝑖
The model is mechanistic, allowing the dynamics of spread of infectious diseases to be
investigated. Importantly, the model allows for the study of indirect connections (travel
from country A to B to C) and the variation of disease characteristics without the addition
of too many moving parts.

The global spatial network Susceptible Infected Removed (SIR) structure models
infectious disease dynamics as a phenomenon that happens in a geo-political network
with countries as nodes and travel flows as directed links. The crucial simplification this
model makes is of abstracting away from the network of people interactions to a network
of country interactions that are mediated by flows of people. This abstraction is
important especially in regards to lab leak as it averages out influence of population
density and co-location of BSL labs in urban centers (see discussion).

Network SIR models for inter-city (cities as nodes) spread of infectious diseases are
common in the literature (Muroya et al., 2013; Pujari & Shekatkar, 2020). Surprisingly, we
found no attempts at SIR-like network models for global disease spread which use EID
and lab leaks as a source of pathogen origin. This may indicate that the level of complexity
of global relations cannot be appropriately captured with a network of countries.
However, there are models for forecasting disease dynamics based on networks of states.
For instance, Sharma et al. 2012 develops a SEIRD model (an elaboration of the SIR model)
over a network of states in India (which are larger in terms of population than many

2 Removed refers to those removed from the pool of available hosts, removed captures recovered
and assumed immune hosts or hosts who have died. This model misses more complex dynamics
such as decay of immunity.
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countries) (Sharma et al., 2021). The existence of such a model of a network of large states
may suggest that a global network of countries could be a reasonable approximation
depending on one’s goals.

2.1.1 Global Travel Data

The Global Transnational Mobility dataset is used to develop the network characteristics
(Recchi et al., 2020). This dataset describes how many ‘trips’ there have been between any
two countries in the world from the years 2011 to 2016 (1 trip = 1 person traveling) . These3

estimates of trips account for multiple modes of transport and have been put together by
aggregating global statistics on tourism and air passenger traffic (Recchi et al., 2019). The
dataset reports travel as trips per year for the purpose of this model travel was converted
to average trips per day

2.1.2 SIR Disease Parameters
The model uses transmission and removal rate parameters ( and ). Transmission andβ𝑖 γ𝑖
removal rates are also assumed the same for all countries. For simplicity a single set of
disease parameters equivalent to SARS-Cov2 are used for all countries for both EID and
lab leaks (see Discussion). This maintains focus on the geographic, regulatory and
socio-economic factors captured in origin potential measures and role of travel networks,
and avoids determining plausible distributions of disease parameters likely to arise from
different origin sources, which would be an extensive piece of work. Future iterations of
the model could explore distributions of disease parameters equivalent to anticipated PPP
informed by historical data .4

SARS-Cov2 parameter values used are from Amiri Mehra et al. (Table 1.) (Amiri Mehra et
al., 2020). It should be noted that parameter values for a given disease are influenced by
many factors not captured within the model, so although informed by empirical data the
parameters are ultimately abstractions.

Table 2.1-1 SIR model parameters for SARS - Cov2 (COVID19) calculated by Amiri Mehra et

al. 2020

Parameter (transmission rate)β 𝑝𝑒𝑟𝑠𝑜𝑛. 𝑑𝑎𝑦( )−1
(removal rate)γ 𝑑𝑎𝑦( )−1

Value 1 0.223

For each country with pandemic origin potential (EID or lab leak) the model is run once
with an initial outbreak of 1000 infected individuals originating in that country. Each
model run consists of 30 days. A country has origin potential if it has an EID vulnerability

4 In the instance of synthetic pathogens e.g. pathogens developed through gain of function or other
synthetic biology processes, determining plausible parameters would be even more complex as
such pathogens would not be bound by proposed virulence trade-off.

3 Dataset can be explored interactively (European Commission, n.d.)

4

https://www.zotero.org/google-docs/?dZ98db
https://www.zotero.org/google-docs/?sbtCfj
https://www.zotero.org/google-docs/?MvcgJ4
https://www.zotero.org/google-docs/?MAT5hy
https://www.zotero.org/google-docs/?MAT5hy
https://www.zotero.org/google-docs/?didqfu


score in Moore et al 2017, or has at least one lab as reported by the Global Biolabs Project
(Koblentz et al., 2021; Moore et al., 2017)

2.2 Relative risk of pandemic origin
Considering all countries C. Given a pandemic being initiated, the probability that the
pandemic originated in a given country c is defined by:𝑃𝑟(𝑐) = 𝑟𝑐

𝑟∈𝐶∑ 𝑟𝑐'   (4) 
Where is the origin source potential of country c. Origin potential measures the relative𝑟𝑐
strength of contributing factors to a pandemic being initiated in a given country.

Relative risk of pandemic origin is considered separately for EID and lab leaks.

2.2.1 Emerging Infectious Disease origin potential
Origin potential of EID is based on the Infectious Disease Vulnerability Index developed in
Moore et al 2017. The Infectious Disease Vulnerability Index aims to identify countries
that are most vulnerable to outbreaks of infectious diseases with potential for
transnational spread to inform preemptive actions that mitigate spread and
consequences of such transnational infectious disease outbreaks (Moore et al., 2017). The
Vulnerability Index is derived from a variety of factors in the following seven domains:
demographic, public health, economic, disease dynamics, health care, political-domestic,
political-international. These factors are then weighted according to elicited expert
opinions.

Vulnerability scores in Moore et al. 2017 were transformed by subtracting the score from
1. This is because the original scores are out of [0,1] where a lower score means a country
is more at risk. But for the purpose of this model, a country that is more at risk should be
given a higher rather than a lower weight.

In particular to Moore et al. 2017 it is important to note that migration (average annual
number of migrants per 1,000 people) is part of the vulnerability score. So travel has been
included in some (albeit minimal) way in their assessment.

2.3.2 Lab leak origin potential

A simple measure of lab leak origin potential from BSL 3+ and 4 labs for a given country is
given by:

𝑟𝑐 = 𝑏𝑐 𝑖=1 
𝑛𝑐∑ 𝑎𝑖𝑐   (5) 

Which can be determined from the following information:

1. The number of BSL-4 and BSL-3+ labs in each country, .𝑛𝑐
5
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2. Area of BSL-4 labs and BSL-3+ in each country, .𝑎𝑖𝑐
3. Global Biolabs Biorisk Management Scorecard (GBBMS), (Koblentz et al., 2021)

score for each country, .𝑏𝑐
Data for 1-3 are provided by the Global Biolabs Project (GBP) which represents the most
developed dataset on BSL 3+ and 4 locations , (Koblentz et al., 2021, 2023). Missing data5 6

required for 1 -3 were inferred by the following actions:

● BSL 4 labs entries without lab area data were assigned the geometric mean of
available BSL 4 lab area data . BSL3+ labs entries which do not include area were7

assigned this value as well.
● Countries with a lab but no GBBMS score were assigned the arithmetic mean of

all GBBMS scores.

BSL3+ numbers provided by GBP roughly match BSL 3 labs reported inMapping Biosafety
Level-3 Laboratories by Publications (Schuerger et al., 2022) which reports 57 BSL 3
locations globally, while GBP reports 55 active BSL 3+ labs. The closeness of the two
numbers is somewhat suspicious given that BSL3+ is a higher classification of 3,
intuitively one would expect a significantly larger number of reported BSL 3 labs. The
distribution of BSL 3 labs reported by Schuerger et al. and BSL 3+ labs by Klobentz et al. do
not match at a continental level. Discrepancies between numbers might be explained by
differences in method, Schuerger et al. 's estimate uses Pubmed publications and would
miss non-publishing labs such as diagnostic labs. The lack of standardization of BSL level
characterization may also impact lab numbers and characterization.8

The GBBMS score is incorporated into the lab leak potential measure to incorporate how
comparatively risky labs in a given country are. The GBBMS is out of 48 biosafety
management indicators derived from standards and best practices endorsed by WHO,
ISO 35001, NTI and other organizations. Indicators are scored positive if relevant
statutory legislation (regulations, standards, and policies) is present in a country. The
metric does not capture compliance or enforcement, decreasing its robustness.

The developed lab leak measure assumes risk of lab escape is proportional to lab area.
This is based on the intuition that greater lab area implies a greater number of lab
experiments and required supporting systems leading to greater potential for human
error (Wurtz et al., 2016), mechanical failure (DEFRA, 2008), or other failures resulting in
pathogen escape. For this version of the model a linear relation between lab area and risk

8 The World Health Organization publishes guidelines and biosafety best practices concerning BSL
3 and 4 research; however, no globally body to regulate implementation exists. As such
implementation of proper biosafety, is up to countries and even researchers further obscuring BSL
3 research 4 safety (Laboratory Biosafety Manual, 4th Edition, 2020).

7 Geometric mean was used over the median as lab area values indicated a lognormal distribution
and sample size was relatively small n=51.

6 Data can also be interacted with through the Global Biolabs interactive map (Global Biolabs, n.d.)

5 BSL 3+ or BSL 3 advanced labs are BSL 3 designated labs that take on extra safety precautions to
carry out research on riskier pathogens that do not require BSL 4 designation e.g. highly
pathogenic influenza (Koblentz et al., 2023)
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is assumed . There is uncertainty in this assumption, for instance an argument based on9

economies of scale would imply that bigger labs can afford better infrastructure thus
reducing risk contribution per unit area. A more in depth investigation of the relationship
of lab leaks and lab size are deferred to future work.

3. Results

Model results are aggregated to obtain an “average” number of cumulative infections ,10

henceforth abbreviated to ACIs, for each pandemic initiation source (EID or lab leak). Each
model run provides the number of susceptible, infected, and removed in each country in
the world for 10, 20, and 30 days after the initial outbreak. Results of the SIR model are
averaged independently for EID and lab leak risk as the relative risk scores (see 2.2) use
different underlying measures that are not directly comparable. To average model results
the relative risk of pandemic origin for each country is multiplied by the results of the
model run that had the country as the origin of the pandemic and products are then
summed.

This type of averaging approach gives a measure of relative risk to early stage pandemics.
One interpretation of this measure is that it provides an estimate of the expected number
of cumulative infections in each country conditional on a pandemic happening with a
distribution of likelihood of pandemic origin from the considered origin source (EID or lab
leaks) described in 2.2.

Other methods of aggregating and interpreting the results from this model are possible
and would be valuable to explore in future work. It is not at all clear that average
cumulative infections is appropriate to inform all prioritization problems. Different
decision problems may ask for different risk measures. One may be interested, for
instance, in preventing the largest number of countries from reaching a certain threshold
of cases in an early stage pandemic. In this case, it could be that a measure that gave
weights to each model run based on this threshold would be more appropriate - for
example. Still, the risk measure of average cumulative infections does provide a general
picture of risk from early pandemics that already begins to capture how travel networks
affect the pandemic risk distribution.

Results from the aggregation described above can be illustrated with heatmaps of
cumulative infections at 10, 20, and 30 days after the initial outbreak. In these heatmaps
color intensity represents each country’s share of global aggregate cumulative infections.
EID and lab leak results are explored separately in sections below.

3.1 EID model results

Figures (3.1-1 - 3.1-3) demonstrate a shift in concentration of ACIs from high EID origin
potential countries (Nigeria, Democratic Republic of Congo, Equatorial Guinea, Central

10 Cumulative infections is the sum of infected and recovered populations.

9 As risk of origin is relative (i.e. the model assumes a pandemic has happened and the country's
relative contribution is determined), a linear scaling of risk assumption according to lab area will
not result in absurd results (e.g. probability being greater than 1).
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African Republic) to high travel nodes. At 10 days (fig 3.1-1) the distribution of ACIs is
largely concentrated in Africa - which reflect EID origin potential scores. After 20 days we
see that in Africa, ACI concentrates in Nigeria and the DRC, which already stood out after
10 days. At 20 days, ACIs start to spread to Asia. Interestingly, at 30 days the picture
changes significantly with the US rising as the country with the largest number of
average cumulative infections in the world, Africa bearing much less of the world’s share
of cumulative infections (although Nigeria is itself still prominent), and India, China,
Russia and Europe concentrating much of the rest of ACIs at 30 days.

Figure 3.1-1.Heatmap of the distribution of ACIs from EID at day 10, measured as
proportion of ACIs. Map shows concentration of ACIs in Central African Countries,
notably: Nigeria, Democratic Republic of Congo, Equatorial Guinea, Central African
Republic.

Figure 3.1-2. Heatmap of the distribution of ACIs from EID at day 20, measured as
proportion of ACIs. Map shows a shift in concentration of ACIs from Central Africa
towards Asia.

8



Figure 3.1-3.Heatmap of the distribution of ACIs from EID at day 30, measured as
proportion of ACIs. Map shows a major jump in the proportion of ACIs located in the US
and continued growth in India and China.

It is important to note that the average numbers may not match the spread of a particular
disease such as SARS-Cov2 for any particular origin country. For instance, at 30 days the
ACIs given by the model in the United States is about 30 million. Yet, after about 1.5 years
of SARS-Cov2 there were only about 38 million confirmed infections in the US (CDC,
2020). However, looking at the model run with China as the country of origin, after 30
days there are about 5 million cumulative cases in the US. In the real world it took about
150 days for confirmed cases to reach this number (Johns Hopkins Coronavirus Resource
Center, n.d.). If estimated unreported cases are considered it seems model results
approximate cases for SARS-Cov2. Indeed, researchers estimated there were about 5
million cumulative cases in the US in April 4 2020 which is about one month after the
50th case was reported in the US (Lu et al., 2021).

Model results can also be displayed in rankings of countries most at risk according to the
proportion of ACIs a country bears at a certain time.

Table 3.1-1.Day 10 top 10 countries according to proportion of ACIs

Country I R Proportion of ACIs

Nigeria 5952 1704 0.0215

Congo (Democratic

Republic of the)

5885 1688 0.0212

Equatorial Guinea 4142 1364 0.0154

Somalia 3740 1084 0.0135

9

https://www.zotero.org/google-docs/?qyfeI7
https://www.zotero.org/google-docs/?qyfeI7
https://www.zotero.org/google-docs/?O0F227
https://www.zotero.org/google-docs/?O0F227
https://www.zotero.org/google-docs/?Ufqxy4


Central African

Republic

3583 1066 0.0130

Chad 3370 976 0.0122

Dominican Republic 3300 961 0.0119

Angola 3221 927 0.0116

Mauritania 3187 951 0.0116

Table 3.1-2.Day 20 top 10 countries according to proportion of ACIs

Country I R Proportion ACIs

Nigeria 1202070 456668 0.0780

Congo (Democratic

Republic of the)

727079 374007 0.0518

India 592721 177498 0.0362

Pakistan 542605 204129 0.0351

Bangladesh 419783 165663 0.0275

China 410423 122502 0.0251

Indonesia 382577 134817 0.0243

Ethiopia 348668 160521 0.0240

Russian Federation 301238 116703 0.0197

Egypt 260116 121677 0.0180

Table 3.1-3.Day 30 top 10 countries according to proportion of ACIs

Country I R Proportion ACIs

United States of

America

18546533 8172089 0.1169

China 11242643 7233951 0.0808

India 9627360 8398861 0.0789

Russian Federation 6971863 3883675 0.0475
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United Kingdom of

Great Britain and

Northern Ireland

5580502 3171135 0.0383

Germany 5477127 2878455 0.0365

France 4546969 2273960 0.0298

Italy 3848005 2071099 0.0259

Turkey 3801141 1983450 0.0253

Nigeria 1190934 3417825 0.0202

The risk that each country poses to the world was also studied as measured by the share
of average cumulative infections that each country is responsible for. In order to obtain
this number we first obtain cumulative infections for each model run. Then, for each such
model run cumulative infections is multiplied by the EID origin risk of this run’s country
of origin divided by the sum of EID origin risk. The resulting distribution of this measure
of how much risk each country is responsible for is shown in figure 3.1-4. The ranking of
countries that, according to this measure, impose the most risk is shown in Table 3.1-4.

Figure 3.1-4.Distribution of risk posed by each country at day 30. India and China
represent the largest risk posed according to the used metric.

Table 3.1-4. Ranking of risk posed to the world by each country at day 30

Country Risk posed

India 0.0363

Maldives 0.0309

China 0.0262
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United Arab Emirates 0.0212

Bahrain 0.0188

Seychelles 0.0165

Palau 0.0159

Cyprus 0.0139

Kuwait 0.0133

Malta 0.0118

Surprisingly, a few very small countries such as Bahrain, Seychelles, Cyprus, Palau, Malta
and Singapore are very high up on this list. One potential explanation is because the
Vulnerability Score from Moore et al 2017 doesn’t appear to account directly for land area
and total population, indicating that the risk measure misses an important factor. As
such, the Vulnerability Scores likely give too much weight to very small countries since in
reality more land area and population increase risk (ceteris paribus). These
counter-intuitive results concerning small countries may thus be an artifact of the fact
that the Vulnerability Score from Moore et al 2017 doesn’t take into account area and
population. This would suggest a more accurate model would need to transform EID
origin potential so as to account for these two factors. A robustness check was run by
re-obtaining the results about ACIs by considering only large countries (see Appendix 1. -
Large countries robustness check). It appears that model results are robust to removing
small countries with the overall ranking not changing significantly.

3.2 BSL 3+ and 4 Lab Leak Model Results

Figures 3.2-1 and 3.2.-2 show the proportion of ACIs in a country at day 10 and 30. The
United States and India, both start with the majority ACIs at day 10 contributing ~⅙ of the
total at this point in time (Table 3.2-1). Several other smaller countries also have a large
amount of ACIs most notably Belarus and Gabon; this makes sense as Belarus possesses a
large BSL 4 lab with area 1589 sqm and scores moderately on the GBBMS being 5th
highest, while Gabon has two labs of (assumed average size) and possesses the worst
GBBMS score of 0.92, which is over 3 times worse than the mean score.

By day 30 India has taken over being the country with the highest proportion of ACIs,
with the United States being the second highest. By day 30 China has the 3rd highest,
having tripled from day 10, which could be explained by China’s large population allowing
much greater growth in numbers of Infected and Removed.
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Figure 3.2-1Heatmap of the ACIs from lab leak origin at day 10, measured as proportion

of ACIs. Map shows the US and India as having the most ACIs.

Figure 3.2-2 Heatmap of the ACIs from lab leak origin at day 30, measured as proportion

of ACIs. Map shows India as having by far the greatest proportion of ACIs, the US’

proportion has decreased from day 10, while China has increased.

Table 3.2-1Day 10 top 10 countries according to proportion of ACIs

Country I R Proportion of ACIs

United States of

America

56171 16079 0.182

India 53546 15321 0.173
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Belarus 30041 8763 0.098

Gabon 14879 4655 0.049

Germany 13784 3952 0.045

Italy 12775 3666 0.041

China 11124 3183 0.036

South Africa 10366 2975 0.034

United Kingdom of

Great Britain and

Northern Ireland

8965 2572 0.029

France 8504 2440 0.028

Table 3.2-3Day 30 top 10 countries according to proportion of ACIs

Country I R Proportion of ACIs

India 65145808 169866885 0.308

United States of

America

29133532 56164609 0.112

China 31538291 41894582 0.096

Germany 15177979 13519508 0.038

United Kingdom of

Great Britain and

Northern Ireland

14810509 10177392 0.033

France 12492772 9271501 0.029

Italy 11297965 8759212 0.026

Mexico 11850272 5280472 0.022

Spain 7832971 6418677 0.019

Russian Federation 10621090 3540902 0.019

Considering the total risk posed by each country, which is measured by the share of

average cumulative infections that each country is responsible for, India is the major

contributor with a score of 0.3017. The United States is second with a score of 0.178 and
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China third with a score of 0.0604 (table 3.2-4). Interestingly Singapore scores quite high

being fourth overall, which given Singapore's relatively low lab risk, ranking 14, implies

that it must be receiving a high number of infected and removed under a variety of

pandemics when they are seeded in other countries. Speculatively, this might imply that

Singapore's location in global travel networks might leave it highly exposed to risk of

importing infections, though this would require determination of Singapore's network

centrality to be confirmed.

Figure 3.2-5 Distribution of risk posed by each country at day 30 from lab leaks. India

represents the largest risk followed by the US and then China.

Table 3.2-4 Ranking of risk posed to the world by each country at day 30 for lab leaks.

Country Risk posed

India 0.3017

United States of America 0.1728

China 0.0674

Singapore 0.0471

Germany 0.0459

Italy 0.0394

United Kingdom of Great

Britain and Northern

Ireland

0.0335
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Belarus 0.0332

Switzerland 0.0295

France 0.0280

Lab leak model results appear to largely reflect the lab leak potential measure derived

from the lab area and the GBBMS score of a country. One salient feature of the model

result is that the risk stays concentrated in the US and India from day 10 to day 30. Both

countries start with a relatively large concentration of lab leak risk and also have large

populations, allowing large numbers of infected and removed to be accrued at a high rate

over the 30 days. Given the limitations of GBBMS which only captures legislation

requirements and does not consider implementation along with the inferred lab area

data, should be considered highly uncertain.

3.3 Comparison

Relative risk scores for EID and lab leak models cannot be compared directly as the

underlying risk metrics derived from EID vulnerability and GBBMS scores are not

absolute measures of risk. That said some high level insights can be gleaned, most notably

the difference in how risk propagates through the network of countries and the influence

of initial risk distribution.

The most salient difference between the models appears to be how the proportion of

aggregate infections moves from day 10 to day 30. For lab leaks, labs are most highly

concentrated in the US and EU, whereas for the EID model, EID origin potential is highly

concentrated in developing countries, most notably in Central Africa. This difference is

important as in the lab leak model the highest risk countries also function as major travel

hubs, whereas in the EID model impacted countries are less central in travel networks

than the US and EU.

4. Discussion

The SIR model presented is best considered a preliminary investigation intended to guide

future work. The model has several major limitations such as the country level of model

abstraction, gaps in the data sets used, and assumptions pertaining to the EID and lab

leak potential measures (see Appendix 4.). These introduce significant uncertainty and

limit how strongly results should be used to inform prioritization. Considering results
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with a healthy dose of skepticism, some high level insights can be gleaned and resulting

implications for prioritization of mitigation efforts.

If you assume that natural pandemics (represented by the EID model) are the main source

of danger, travel dynamics matter a lot because the main countries of EID origin as per

EID vulnerability scores from Moore et al. are developing countries in Africa (Somalia,

Central African Republic, Chad, South Sudan, Mauritania, Angola). These countries are

only minimally connected and thus the main channels of transmissions from these poorly

connected countries to the broader world is via other more connected countries. As a

consequence the main dynamic at play is the travel network rather than the distribution

of origin, as demonstrated in the results by the shift in average cumulative infections

from Central African countries to major travel countries. One interpretation of this result

relevant to prioritization of mitigation efforts is that the most connected countries are

roughly both the most affected and the most important in global travel dynamics.

Conversely if you assume that lab leaks are the main source of risk, then the main

countries are also quite globally connected countries (e.g. US, China, India etc.). Thus the

distribution of pandemic origin ends up affecting the result at day 30. The list of most

high risk countries then includes India and a few other countries that are not the richest

but still heavily connected and with poor biosafety management as captured by the

GBBMS. India is especially of note contributing ~⅓ of risk posed at day 30. This result is

somewhat unsurprising given the presence of 5 BSL 3+ and 4 labs in the country and the

second lowest biosafety management score of 0.77 behind only Gabon at 0.92, and being

~2.7 times worse than the average score. All else equal, efforts to improve biosafety

management practices, and compliance in India may provide a good opportunity to

reduce expected damages from lab leaks.

One relevant way to frame the results is in terms of countries being risk generators and

risk importers. A risk generator is a country that contributes and exports significant risk;

this is largely driven by the origin potential (EID or lab leak). A risk importing country is

one that possesses low origin potential but ends up with a high proportion of ACIs. For

many countries lab leak origin potential is 0 as they do not possess any BSL 3+ or 4 labs ,11

and as a result they will be risk importers. This distinction is useful as it highlights how

countries might wish to respond, and types of mitigation efforts that different groups

might push for. For instance, risk importing countries may be best served to develop

means to rapidly insulate themselves from major transport hub countries where risk is

11 Though it should be noted that BSL 3 and even BSL2 labs are likely to contribute risk but are not
represented in the data set.
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most likely to accrue and then disperse e.g. US, India, China. Though social, political and

economic factors may limit the reality of being able to achieve this.

Risk importing countries differ between the EID and lab leak model and interestingly the

role of major travel hub countries differ between the EID and lab leak models. For the EID

model US, India and China, are risk importers which concentrate cases between days 10

and days 30, whereas for lab leaks US, India and China are significant risk generators.

This implies that lab leak origin pandemics should be especially of concern (as compared

to EID origin) as the US, India and China are likely to generate outbreaks, resulting in

large expected cumulative infections in these countries that can be distributed to the

many countries that are directly connected by travel networks.

The concentration of risk in a small number of fairly rich countries (US, India, China) at

day 30 in both the EID and lab leak model indicates potentially high leverage points for

pandemic risk mitigation. These countries, in light of being central in the spatial network

(derived from travel data) and/or contributing significant lab leak risk, have the power to

significantly decrease the global risk of pandemic by implementing the right pandemic

preparedness & response public policies.

Examples of public policies that might be beneficial to explore for such countries include:

● Deploying metagenomic sequencing in their main airports. Given that these

countries are the nodes of the global traffic, this would increase the likelihood that

spreading pathogens are identified rapidly by these airports, which can inform

response actions.

● Having strict travel ban policies with pre-commitments. When travel bans are

implemented under certain conditions e.g. the population density of the country

of origin is lower than the population density of the country of arrival, they can be

net positive. Implementing well designed travel bans with pre-commitments in

central countries may help avoid worst case contagion dispersion via air travel

network nodes.

5. Conclusion

The spatial network SIR model presented combines travel network data and two sources

of potential pandemics (EID and lab leaks) to investigate early stage pandemic spread at

the country level. Especially of interest is the BSL 3+ and 4 lab leak risk model which

synthesizes a novel lab leak potential score from recently collated BSL 3+ and BSL 4 lab
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data and country biosafety management practices. To the best knowledge of the authors

this represents a first attempt to develop such a model.

With respect to the model limitations and uncertainties, results for both EID and lab leak

models demonstrate that a handful of large, comparatively wealthy countries (US, India

and China) are likely to be heavily impacted by day 30 from pandemics initiated by either

source. For EID initiated pandemics, these countries appear to import risk from EID

origin countries concentrated in Central Africa (Nigeria, Democratic Republic of Congo,

Equatorial Guinea, Central African Republic), while for the lab leak model these countries

especially the US and India generate the majority of risk. Consequently, mitigation efforts

targeting these large, comparatively wealthy, highly connected countries may offer a

better opportunity, all else equal, to reduce risk globally. The implication of this result

runs somewhat counter to existing policy recommendations, such as Moore et al. 2017

that suggest focusing mitigation efforts on EID origin countries.

City level features such as population density, colocation of BSL 3+ and 4 labs in urban

areas, and close proximity of highly connected travel nodes (major airports, ports etc.)

that facilitate rapid global spread are likely to make certain cities disproportionately

impactful to EID and lab leak risk. The country level of abstraction used by the model

misses these features, decreasing model accuracy and limiting usefulness for targeting

mitigation efforts. Exploring EID and lab leak risk with models that use cities as nodes

would capture critical features, and allow more meaningful network analysis to be

undertaken improving model results and usefulness for prioritization.

Data availability:

Model code and supplementary data can be made available upon request of the authors.

Acknowledgements:

Thanks to David Manheim and Steven Luby who provided feedback on an earlier version

of the model and recommendations to incorporate BSL labs to create a more complete

picture of risk. Thanks to the team at Global Biolabs for the work in collating information

on the various BSL 3+ and 4 labs which made an invaluable resource for the project.

Thanks to SERI who provided an initial opportunity for Simeon to explore aspects of

pandemic risk and prioritization that informed work on the paper. Thanks to Sahil Shah

who provided input in the preceding work and David Denkenberger who provided

feedback on the conference paper. Thanks to Eric Thierry for help on improving the

simulation code.

19



6. References

Amiri Mehra, A. H., Abbasi, Z., & Zamani, I. (2020). Parameter Estimation and Prediction of

COVID-19 Epidemic Turning Point and Ending Time of a Case Study on

SIR/SQAIR Epidemic Models. Computational and Mathematical Methods in Medicine,

2020, e1465923. https://doi.org/10.1155/2020/1465923

Baum, S. D., Armstrong, S., Ekenstedt, T., Häggström, O., Hanson, R., Kuhlemann, K., Maas,

M. M., Miller, J. D., Salmela, M., Sandberg, A., Sotala, K., Torres, P., Turchin, A., &

Yampolskiy, R. V. (2019). Long-term trajectories of human civilization. Foresight,

21(1), 53–83. https://doi.org/10.1108/FS-04-2018-0037

Beckstead, N. (2013). On the overwhelming importance of shaping the far future. Rutgers

University.

Bostrom, N. (2002). Existential Risks: Analyzing Human Extinction Scenarios and Related

Hazards. Journal of Evolution and Technology, 9(1).

https://www.nickbostrom.com/existential/risks.pdf

Bostrom, N. (2013). Existential Risk Prevention as Global Priority. Global Policy, 4(1), 15–31.

https://doi.org/10.1111/1758-5899.12002

Bostrom, N., & Cirkovic, M. M. (2008). Global Catastrophic Risks. Oxford University Press,

Oxford.

Brault, A. C., Powers, A. M., Medina, G., Wang, E., Kang, W., Salas, R. A., De Siger, J., &

Weaver, S. C. (2001). Potential Sources of the 1995 Venezuelan Equine Encephalitis

Subtype IC Epidemic. Journal of Virology, 75(13), 5823–5832.

https://doi.org/10.1128/JVI.75.13.5823-5832.2001

Caplan, B. (2008). The totalitarian threat. In B. Caplan, Global Catastrophic Risks. Oxford

University Press. https://doi.org/10.1093/oso/9780198570509.003.0029

CDC. (2020, March 28). COVID Data Tracker. Centers for Disease Control and Prevention.

https://covid.cdc.gov/covid-data-tracker

20

https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA


Cumulative Cases—Johns Hopkins Coronavirus Resource Center. (n.d.). Johns Hopkins

Coronavirus Resource Center. Retrieved 19 November 2021, from

https://coronavirus.jhu.edu/data/cumulative-cases

DEFRA. (2008). Foot and mouth disease 2007: A review and lessons learned. Department for

Environment Food and Rural Affairs.

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/atta

chment_data/file/250363/0312.pdf

Denkenberger, D., Sandberg, A., Tieman, R. J., & Pearce, J. M. (2021). Long-term

cost-effectiveness of interventions for loss of electricity/industry compared to

artificial general intelligence safety. European Journal of Futures Research, 9(1), 11.

https://doi.org/10.1186/s40309-021-00178-z

Denkenberger, D., Sandberg, A., Tieman, R. J., & Pearce, J. M. (2022). Long term

cost-effectiveness of resilient foods for global catastrophes compared to artificial

general intelligence safety. International Journal of Disaster Risk Reduction, 73,

102798. https://doi.org/10.1016/j.ijdrr.2022.102798

European Commission. (n.d.). Dynamic Data Hub. Retrieved 29 March 2023, from

https://migration-demography-tools.jrc.ec.europa.eu/data-hub/

Global Biolabs. (n.d.). Global Biolabs. Retrieved 19 March 2023, from

https://www.globalbiolabs.org

Holmes, E. C., Rambaut, A., & Andersen, K. G. (2018). Pandemics: Spend on surveillance,

not prediction. Nature, 558(7709), 180–182.

https://doi.org/10.1038/d41586-018-05373-w

Johnson, N. P., & Mueller, J. (2002). Updating the accounts: Global mortality of the

1918-1920 ‘Spanish’ influenza pandemic. Bulletin of the History of Medicine, 76(1),

105–115. Scopus.

Jones, B. F. (2010). Age and Great Invention. Review of Economics and Statistics, 92(1), 1–14.

21

https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA


https://doi.org/10.1162/rest.2009.11724

Koblentz, G. D., Ernhardt, B., Rodgers, J., Lentzos, F., Ameneiros, M., Houser, R., & Wingo.

(2021). Global BioLabs [Policy]. https://www.globalbiolabs.org

Koblentz, G. D., Ernhardt, B., Rodgers, J., Lentzos, F., Ameneiros, M., Houser, R., & Wingo.

(2023). Global BioLabs Report 2023 (Global Biolabs) [Policy]. Schar School of Policy

and Government.

https://static1.squarespace.com/static/62fa334a3a6fe8320f5dcf7e/t/6412d3120ee69

a4f4e�ec1f/1678955285754/KCL0680_BioLabs+Report_Digital.pdf

Laboratory biosafety manual, 4th edition (No. 4; LABORATORY BIOSAFETY MANUAL, p.

124). (2020). World Health Organization.

https://www.who.int/publications-detail-redirect/9789240011311

Lu, F. S., Nguyen, A. T., Link, N. B., Molina, M., Davis, J. T., Chinazzi, M., Xiong, X.,

Vespignani, A., Lipsitch, M., & Santillana, M. (2021). Estimating the cumulative

incidence of COVID-19 in the United States using influenza surveillance, virologic

testing, and mortality data: Four complementary approaches. PLOS Computational

Biology, 17(6), e1008994. https://doi.org/10.1371/journal.pcbi.1008994

MacAskill, W. (2022).What we owe the future: A million-year view. Oneworld.

Margolis, J., & Parfit, D. (1986). Reasons and Persons. Philosophy and Phenomenological

Research, 47(2), 311. https://doi.org/10.2307/2107444

Merler, S., Ajelli, M., Fumanelli, L., & Vespignani, A. (2013). Containing the accidental

laboratory escape of potential pandemic influenza viruses. BMC Medicine, 11(1),

252. https://doi.org/10.1186/1741-7015-11-252

Millett, P., & Snyder-Beattie, A. (2017). Existential Risk and Cost-Effective Biosecurity.

Health Security, 15(4), 373–383. https://doi.org/10.1089/hs.2017.0028

Moore, M., Gelfeld, B., Okunogbe, A., & Paul, C. (2017). Identifying Future Disease Hot

Spots: Infectious Disease Vulnerability Index. Rand Health Quarterly, 6(3), 5.

22

https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA


Muroya, Y., Enatsu, Y., & Kuniya, T. (2013). Global stability for a multi-group SIRS epidemic

model with varying population sizes. Nonlinear Analysis: Real World Applications,

3(14), 1693–1704. https://doi.org/10.1016/j.nonrwa.2012.11.005

Ord, T. (2020). The Precipice: Existential Risk and the Future of Humanity. Hachette Books.

Perry, R. D., & Fetherston, J. D. (1997). Yersinia pestis—Etiologic agent of plague. Clinical

Microbiology Reviews, 10(1), 35–66. https://doi.org/10.1128/CMR.10.1.35

Pujari, B., & Shekatkar, S. (2020).Multi-city modeling of epidemics using spatial networks:

Application to 2019-nCov (COVID-19) coronavirus in India.

https://doi.org/10.1101/2020.03.13.20035386

Recchi, E., Deutschmann, E., & Vespe, M. (2019). Estimating transnational human mobility on

a global scale [Working Paper]. https://cadmus.eui.eu//handle/1814/62326

Recchi, E., Deutschmann, E., & Vespe, M. (2020). Global transnational mobility dataset [Data

set]. Robert Schuman Centre for Advanced Studies.

https://hdl.handle.net/1814/67634

Sandberg, A., & Bostrom, N. (2008). Global catastrophic risks survey [Technical Report (vol

1)]. Future of Humanity Institute, Oxford University.

Schuerger, C., Abdulla, S., & Puglisi, A. (2022).Mapping Biosafety Level-3 Laboratories by

Publications. Center for Security and Emerging Technology.

https://doi.org/10.51593/20220019

Sharma, N., Verma, A., & Gupta, A. (2021). Spatial network based model forecasting

transmission and control of COVID-19. Physica A: Statistical Mechanics and Its

Applications, 581, 126223. https://doi.org/10.1016/j.physa.2021.126223

Shulman, C., & Thornley, E. (forthcoming). HowMuch Should Governments Pay to Prevent

Catastrophes? Longtermism’s Limited Role. In J. Barrett, H. Greaves, & D.

Thorstad (Eds.), Essays on Longtermism. Oxford University Press.

Spreeuwenberg, P., Kroneman, M., & Paget, J. (2018). Reassessing the Global Mortality

23

https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA


Burden of the 1918 Influenza Pandemic. American Journal of Epidemiology, 187(12),

2561–2567. https://doi.org/10.1093/aje/kwy191

Wurtz, N., Papa, A., Hukic, M., Di Caro, A., Leparc-Goffart, I., Leroy, E., Landini, M. P.,

Sekeyova, Z., Dumler, J. S., Bădescu, D., Busquets, N., Calistri, A., Parolin, C., Palù,

G., Christova, I., Maurin, M., La Scola, B., & Raoult, D. (2016). Survey of

laboratory-acquired infections around the world in biosafety level 3 and 4

laboratories. European Journal of Clinical Microbiology & Infectious Diseases, 35(8),

1247–1258. https://doi.org/10.1007/s10096-016-2657-1

24

https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA
https://www.zotero.org/google-docs/?kwmYlA


Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

Preprintv1.1AppendixPandemicriskEIDandlableaksSIR1.pdf

https://assets.researchsquare.com/files/rs-4343122/v1/264b5a2c26169b783b56d971.pdf

