
Quantitative, Data-driven Network Model for Global Cascading

Financial Failure

 Lukasz G. Gajewski ∗ and Michael Hinge

Alliance to Feed the Earth in Disasters (ALLFED),

603 S. Public Rd #57 Lafayette, CO 80026, USA

David Denkenberger

Alliance to Feed the Earth in Disasters (ALLFED),

603 S. Public Rd #57 Lafayette, CO 80026, USA and

Department of Mechanical Engineering,

University of Canterbury, Christchurch, Canterbury 8041, NZ

Abstract

Global catastrophic risk events, such as nuclear war, pose a severe threat to the stability of

international financial systems. As evidenced by even less severe scenarios like the Great Reces-

sion, an economic failure can propagate through the world trade network, wreaking havoc on the

global economy. While the contemporary literature on cascading failure models addresses this issue

qualitatively, a simple and intuitive quantitative estimation that could be used in integrated as-

sessment frameworks is missing. In this study, we introduce a quantitative network model of global

financial cascading failure. Our proposal is a fast, efficient, single free parameter model, following

a straightforward logic of propagating failures. We fit the model to the Great Recession and test it

against historical examples and commercial analysis. We also provide predictions for a hypothetical

armed conflict between India and Pakistan. Our aim is to introduce a quantitative approach that

could inform policy decisions by contextualising global catastrophic scenarios regarding financial

losses and assessing the effectiveness of resilience strategies, complementing existing models and

frameworks for broader risk assessment.
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I. INTRODUCTION

The interconnectedness of the global economy has reached unprecedented levels, driven

by advancements in trade, technology, and financial systems. While this interdependence

has facilitated economic growth and resilience in many contexts, it has also heightened sys-

temic vulnerabilities to Global Catastrophic Risks (or GCRs), which have the potential to

collapse civilisation, affecting countless future generations [1–3]. Events such as pandemics

[4], financial shocks and geopolitical conflicts have demonstrated the potential to disrupt

economies at regional and global scales [5]. The global economy is also vulnerable to ad-

ditional GCRs without a recent precedent, such as severe volcanic eruptions [6, 7], nuclear

conflict [8], and extreme climate phenomena [9]. Even when originating in a single loca-

tion, these shocks would likely propagate through supply chains, financial markets, and

institutional frameworks, resulting in cascading effects globally [10–13].

We believe it is vital to have reasonable estimates of the consequences of global catas-

trophic events to prepare for the case where prevention fails. This manuscript aims to

introduce a relatively straightforward yet quantitative model in GCR scenarios, not to de-

bate which scenarios are more or less likely to happen; therefore, we will provide a wide

range of possible initial conditions in a hypothetical India-Pakistan armed conflict.

We do not intend to compete with detailed economic analysis tools and models [14–16]

but provide a simple, intuitive and fast way of estimating the order of magnitude of global

financial losses in a GCR scenario using publicly available and easily accessible data. Typical

economic models require the modeller to consider many different, complicated, interacting

mechanisms, which presents challenges when considering severe market disruptions. For

example, Computable General Equilibrium Models consider all markets - including all in-

vestment, saving and consumer expectations. These are powerful tools, but they can be

“black boxes” that struggle to link causes to effects and elude interpretability [17]. They

also rely on many buried empirical relationships, which may or may not be valid in more

extreme shocks. Partial equilibrium models address some of these issues by focusing on the

dynamics of a subset of markets; however, this approach also has limitations - chiefly that

they will only produce results for a subset of the economic shock. In addition, they can

also miss important dynamics if unexpected interactions with sectors are excluded from the

model [18, 19]. Such models also require much more precise work to formulate and create

2



an intricate web of assumptions that need verification and validation in isolation and as an

integral system. While we acknowledge the power of such models and that they constitute

the most precise approach today, we also point out that this precision comes at a cost – as

outlined above.

Our model is a complex network approach. This abstraction allows for a much easier

adaptation of the model to different scenarios and enables us to circumvent the intricacies

of economic modelling. Therefore, a mere fraction of the assumptions is required to produce

a result. It is a trade-off, of course – we lose the fine detail but retain the big picture.

We propose a singular, intuitive way of how a crisis in one country transfers over to

others. The reason behind this mechanism is most assuredly the result of all the elements

that economic models consider, but we opt to abstract all of them and put them under

an umbrella mechanism. This modelling strategy is employed broadly in many areas of

science, such as computational social sciences [20–22] and epidemiology [23–25]. Using

the latter as an example to demonstrate our point here – we recognise that the reason

for infection transmission is the complicated fluid and aerosol dynamics and virus/bacteria

(micro-)biology, and all other various kinds of complicated and detailed mechanisms, but in

terms of modelling infections and their spreading dynamics through a population, we can

abstract all of that into a handful of parameters, typically probability of infection and rate of

recovery. The low computational complexity of our model, O(V+E), where V is the number

of vertices and E is the number of edges in the system, additionally makes our approach very

suitable for integrated assessment frameworks, similar in spirit to other simplified models in

economics [26, 27].

The work presented here can also be considered a quantitative companion to the cascading

threshold model [13], which has been used qualitatively to analyse many systems, including

supply chains [12] and trade networks [10]. In our analysis, we assume that the critical

value of the threshold parameter has been reached and a system-wide cascading failure is

occurring.

Our model establishes a directed, weighted graph representing the world trade network,

where edges represent import/export between countries (vertices), which in turn have an

associated “capacity” – their gross domestic product (GDP) plus the absolute value of net

exports. A country experiencing a failure, i.e., a fractional reduction ξ of its capacity,

transfers that failure onto its neighbours with whom it trades at value ν via a transfer
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FIG. 1. Example propagation. At each time step, the red node experiences a failure and transfers

it onto its neighbours (orange) whilst other nodes remain unaffected yet (blue).

function T (ξ;α) and reduces this trade value by ξ (α is the sole free parameter of the

model). Those neighbours then experience their own failure ξ′ = ν × T (ξ;α) and transfer it

onto their neighbours, and so on until all nodes have been affected. This is similar to the

independent cascade model [28], although our model is deterministic, and we allow countries

to hit back the source of their failure. The latter, an echo or reverberation effect of sorts,

can only happen once between a pair of nodes and at reduced trade volume. We present a

simple example of such propagation in Fig. 1, and a more detailed description is available

in section IV.

II. RESULTS

We fit our model to the 2007-2009 Great Recession crisis. The Great Depression or World

War II would have been better cases; however, data availability prohibits this. In the model,

we assume a global cascading loss, i.e., all countries are expected to be negatively affected,

which was not the case in the Great Recession. Thus, we only consider the losses during the

2007-2009 period and ignore the countries that experienced any gains. In order to provide a

prediction interval as opposed to a point prediction, we utilise the quantile regression [29].

The parameter values – α – for specific quantiles found for the Great Recession are then used

in all other simulations. This approach of combining the quantile regression with fitting to
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FIG. 2. Model financial loss predictions (Y-axis) vs actual losses (X-axis) in US dollars in the

Great Recession. The solid line is a visual guide for Y = X. In a perfect fit, all points would

be on the solid line. The coefficient of determination is R2 = 0.66 (calculated on a linear scale;

calculating it in log-log would inflate it to R2 = 0.79). Since the USA’s loss is the initial condition

for this scenario, its losses have been excluded here.

only losses in the Great Recession implicitly allows us to capture resilience (or lack thereof)

mechanisms on the global market. Fitting to a low quantile level, we essentially say that

all countries in our model shall be as resilient as the least affected countries in the Great

Recession. Conversely, when we fit to a high quantile level, we say that all countries are

vulnerable to financial perturbations. Thus, we achieve a range of estimates for best- and

worst-case possibilities in potential crises.

The comparison of the median predicted losses to actual losses is shown in Fig. 2. The

true losses were estimated by extrapolating countries’ GDP from the time prior to the crisis

to post-crisis and comparing it against the actual GDP value (inflation-adjusted) in that

year.

5



FIG. 3. Model predictions vs. our estimates of losses in historical scenarios and the Bloomberg

analysis of a potential Korean conflict. The Y-axis shows the financial losses in trillions of US

dollars. Green intervals are the output of our model, while grey are real-value estimates (i.e.,

target values). The error bars are 25th to 75th percentiles.

The model predictions here are for the 50th percentile, i.e., the median, and they line up

with real values reasonably well with R2 = 0.66. The country-by-country breakdown of the

results is presented in Supplementary Information (SI).

The validation of our model is, of course, a challenge due to, fortunately, very few recent

global disasters that would be appropriate. However, we assembled a set of historical exam-

ples alongside the analysis of the Korean peninsula tensions by Bloomberg Economics [30],

and the predictions of our model are shown in Fig. 3. The prediction interval chosen here

was 50%, meaning that the lower estimate is with the optimal parameter value for the 25th

percentile and the upper estimate for the 75th percentile, with the diamond shape within

the range representing the median. While the model matches the real value estimates for

this interval, it is important to remember the model’s limitations here. In scenarios like the

2014 Russian financial crisis, the model would not be successful. This is because the model
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FIG. 4. India-Pakistan conflict predictions. On the X-axis, we show the % of GDP loss of each

India and Pakistan, and on the Y-axis, the total global loss (in tens of trillions of dollars on the

left axis and % of global GDP on the right). Results are 50% prediction intervals except for the

orange line, in which the only losses are India’s and Pakistan’s. Colours indicate the amount of

trade headed to India and Pakistan that has been diverted to other countries. These results as the

% of global GDP loss on both axes are shown in SI.

lacks a mechanism for gaining or not losing money. The 2014 case is beyond the current

capabilities of the model as it was not a global cascading failure [31–33].

With these results, we are confident that our model can accurately predict the magnitude

of global financial losses in a catastrophic global scenario, and we can now consider a new

scenario of the hypothetical India-Pakistan armed conflict to depict the type of predictions

our model is capable of.

Fig. 4 depicts the median prediction (solid line, green, 0% trade reduction) with the 50%

prediction interval as the band around it. The total loss is calculated as a function of the

initial loss inflicted upon India and Pakistan due to their conflict, such that an x-axis value
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FIG. 5. India-Pakistan example scenario maps showing the absolute loss in US dollars. The colour

depicts the loss magnitude of model’s median prediction. The relative loss map is included in SI.

of, for example, 20% means that India and Pakistan each lose 20% of their corresponding

capacities. For the sake of concrete comparison, the Bloomberg analysis indicates that South

Korea would lose 37.5% of its GDP due to war [30], so assuming a 37.5% loss for each country

($1.74 trillion), the median prediction from our model is a $4.4 trillion loss. However, this

assumption might not apply to India and Pakistan; therefore, we provide our own estimate

of the initial conditions of this conflict.

We use the industrial GDP and fatalities estimates from [34]. In that study, the authors

estimate the industrial GDP and immediate fatalities due to a nuclear conflict between India

and Pakistan. The industrial GDP of India would decrease by 1.5% and Pakistan’s by 8%,

and the countries would lose 33 million and 24 million people, respectively.

Assuming that India’s industrial output is 25% of its GDP and Pakistan’s 20.8% [35, 36],

we estimate the initial loss as the sum of the number of fatalities multiplied by GDP per

capita and the industrial loss, resulting in India’s initial loss being 2.7% and Pakistan’s

11.6%. With these assumptions, the median prediction for the total global losses is $812

billion.

In Fig. 4, we also consider a straightforward experiment of how redistributing trade from

countries experiencing failure impacts the results; those are the grey line for 50% trade

reduction and the orange for 100%. The idea here is very simple – the specified amount of
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trade that some country has with India and Pakistan is diverted evenly to said country’s

other neighbours. The 100% reduction line doesn’t have a prediction interval because the

only losses then are due to India and Pakistan alone.

Finally, in Fig. 5, we show a detailed world map indicating financial losses (median pre-

diction) for each country (as long as we have sufficient data to do so) in the example scenario

of 2.7% and 11.6% initial capacity losses in India and Pakistan, respectively. Naturally, In-

dia and Pakistan suffer significantly, and in terms of absolute value, the USA and China are

“leading” as well. That is likely due to the fact that these are simply big and well-connected

economies in the vein of “the taller they stand the harder they fall”.

III. DISCUSSION

In this paper, we propose a quantitative network model of global financial cascading

failure. Our approach is fast and efficient and can be run on virtually any modern machine

without needing cloud or super-computing. It is also straightforward, having only one free

parameter, and intuitive as, in its essence, it is a “passing on” procedure with a rebound

mechanism. Our results match more complex procedures and historical examples very well,

and while the model might lack some nuance, we believe it can be effective for estimating

financial losses in global catastrophic risk scenarios.

In practical terms, we hope that our model can be a helpful tool to inform policy decisions

regarding preparedness for catastrophic situations. At its core, it allows for contextualising

global catastrophic scenarios in terms of financial losses and, in principle, it can help identify

the effectiveness of resilience strategies in specific scenarios. Some strategies are naturally

easier than others to be evaluated by our model, as portrayed by the simple example of

trade redistribution. Thus, trade diversification or scaling-up of domestic production would

be good candidates for policymakers to consider. We also expect it to be a valuable addition

to existing models and integrated assessment frameworks [37] alongside other mechanisms

such as nuclear winter or any other social, economic or political ones. It is especially vital

to consider cascading effects because, as indicated before [10–13] and supported by our own

results, small perturbations to the system can cause a major ripple effect affecting the whole

system.

Despite what we believe to be a successful demonstration of the model’s capabilities, the
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model is not without its flaws and limitations. This paper is a proof-of-concept, and while we

think that this approach can already be applied to assessing the financial impacts of global

catastrophic risk scenarios, there is plenty of room for improvement and consideration.

Firstly, its structure and primary operational mechanism are conjectured and not derived

from first principles (socio-economic or otherwise). This, perhaps, is not a fatal flaw on its

own; however, it is easy to imagine increased accuracy and precision from a derived trans-

fer function rather than a conjectured one. We also suppose a single, independent cascade

dynamic while others, more akin to compartmental models, such as Susceptible-Infected-

Removed, Susceptible-Infected-Susceptible or reaction–diffusion [38], could be considered.

Secondly, as it stands now, it has no allowance for not losing or gaining capital. Lack of

loss could be potentially addressed by directly combining our approach with the threshold

dynamics studied, e.g., in [10] or similar. This poses its own challenges; however, finding a

way of estimating the real-world value of the control parameter is the major one. Financial

gains are severely more complex as they involve certain countries taking over trade connec-

tions, which could be addressed with temporal networks [39, 40]. Thirdly, it heavily relies on

historical data to find optimal parameter values. Due to the lack of high-quality data on a

complete global cascading failure, the straightforward loss estimate and fitting procedure we

employed are naturally flawed. Since we hope that an appropriate training scenario does not

happen any time soon, this can prove to be a challenging limitation to remove. Lastly, the

initial conditions must be estimated via some other means, which might differ significantly

between different catastrophic scenarios, although some of that work has already been done,

as in the estimates we have taken from [34].

IV. METHODS

All the data used in our study are publicly available from the International Monetary Fund

(IMF) [41] and World Bank [42] data portals. The model is implemented in Python [43] using

complex networks and data science libraries [44–50]. The model’s implementation is open-

source and available at https://github.com/allfed/cascading-financial-failure.

10



A. Data Processing

The trading data from the IMF data portal were chosen to be the CIF (Cost, Insurance,

and Freight) import data following the logic in [10] that presumes this is the most reliable

option available. All values are presented on a nominal US dollar (USD) basis relevant to the

year in which the shock occurred, with the World Bank data acquired in constant 2015 USD

and then adjusted for inflation using US CPI, also taken from the World Bank database.

The data used in the analysis is from the appropriate year depending on the scenario

analysed, i.e., 2007 for the Great Recession, 2018 for the Korean crisis (this year was chosen

for better comparison with the Bloomberg result), 2023 for the India-Pakistan war, etc. The

list of countries used in each scenario depends on the data availability in the given year.

When certain countries lack appropriate data, they are removed from the dataset for that

scenario.

To estimate the financial loss in terms of GDP in the 2007-2009 recession, we use linear

regression fitted to the four years prior to the event (so in this case, years 2004-2007), then

extrapolate to the expected GDP in the year 2009, from which we subtract the actual value

in 2009, giving us the loss value in USD. The idea here of using a local linear approximation

is rooted in what is typically used in assessing losses by, e.g., the World Bank [9], i.e.,

extrapolating from one year to the next and comparing against the actual value. GDP as a

series in long timespans (e.g. 50 years) are often non-linear; however, they are also typically

not available, so a long-term trend is not feasible. In “medium” timespans, there is not even

a guarantee of a monotonic series (e.g., Russia’s GDP time series in the years 1990-2007 is

parabola-esque). On the other hand, locally, i.e., in short timespans, the time series can

often be considered linear with reasonable accuracy, while very short, i.e., two years, period

risks fitting to outlier events. More sophisticated and country-tailored approaches would

naturally be better. Still, they fall outside this paper’s scope as our primary goal here is to

propose a quantitative cascading network model. While we believe this is an appropriate

approach for our purposes, we show how the model performs with other timespans in SI.
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B. Validation scenarios

In the invasion of Ukraine, the initial conditions – the loss for Ukraine and Russia – are

calculated using the linear extrapolation technique, the same as for the Great Recession.

The global losses, however, are taken from the World Bank analysis [51], which estimates

them to be 0.7% of global GDP.

In the 2011 Thailand floods, once again, initial conditions are estimated like in previ-

ous cases, with the exception that the four-year period before 2011 happened to overlap

with the Great Recession, which is a significant outlier event. Thus, we consider the years

{2006, 2007, 2010} here. The global losses, however, are again estimated based on the World

Bank report [9], in which there is an estimate for the damage to the global industrial out-

put of 2.5%. To convert it to financial losses, we looked at the share of GDP by sector

and country [52], and the lowest and highest values in this data are used to create the

upper- and lower-end estimates for the global financial losses due to the floods, such that

it’s 2.5% × 43.35% × global GDP and 2.5% × 18.4% × global GDP, respectively.

Finally, the Korean peninsula scenarios are taken from the Bloomberg analysis [30]. This

analysis considers two hypothetical scenarios of the North Korean regime collapse and an

armed conflict between North and South Korea. While it cannot be considered a fact as

this analysis is also a result of a model (or several models), this model in question is far

more complex than ours and well-established in economic literature [14–16]. A keen reader

might notice a slight discrepancy between the Bloomberg values depicted in our plots and

the original article. This difference is due to the different data sources used in their analysis

compared to ours. To remedy this mismatch, we used the percentage changes from the

Bloomberg analysis and calculated the absolute values of the 2018 data that we could obtain.

This is necessary because, in their analysis, the data are extrapolated in an unspecified way

to 2024, so we cannot match the datasets. North Korea is omitted from our model due to

a lack of appropriate data.

C. Model

The structural part of the model is a world trade network built from the IMF trading

data. We create a directed, weighted graph where the direction indicates import/export,
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and the weight is the value of the trade in USD. Each node has a “capacity” attribute whose

value is given by the country’s GDP plus the absolute value of its net exports.

The dynamic part of the model is inspired by the threshold cascading failure model

[10, 12, 13] and the independent cascade model [28]; however, in our setting, we are past the

critical threshold value and the evolution is deterministic. The reason for this is twofold.

Firstly, we are most interested in global catastrophic scenarios, and secondly, we aim to

isolate the dominant cascading failure mechanism. Thus, our model presumes that one

country’s financial crisis propagates throughout the global trade network like a cascading

failure with an addition of reverberation. Each country experiencing a failure transfers that

loss onto its neighbours, which causes them to experience a failure, which they transfer

onto their neighbours and so on. The reverberation means that a country transferring its

failure onto others gets hit back by the failure echo from its neighbours, but this can happen

only once per pair of nodes. Moreover, our approach is quantitative as opposed to the

aforementioned threshold models, in the sense that we do not just consider a change of state

but a transfer function of one country’s loss onto the next. This is in contrast to models

that are typically only interested in a binary failed/not-failed state.

The transfer of the loss from one country to another is:

T (ξ;α) =
αξ

α + 2ξ − 1
, (1)

where α is the free parameter of the model, and ξ is the fractional capacity reduction

ξ ∈ [0, 1].

This transfer function is derived by setting the mode of the beta distribution to ξ and

calculating the expected value of the distribution. This distribution is a natural choice for

modelling random variables bounded in the [0, 1] domain [53]. On the other hand, this

choice is somewhat arbitrary, and in principle, any function [0, 1] → [0, 1] could be utilised

here. We consider two other transfer functions, a linear and a quadratic one, in SI. When

country A transfers its loss ξA onto country B, the capacity of country B is reduced by

ν(A,B) × T (ξA;α) where ν(A,B) is the weight of the edge (A,B), and this weight is also

updated such its new value is ν(A,B) × ξA. Country A does this to all its neighbouring

countries, and then each of those neighbours will get their turn to repeat the process. Each

country transfers its loss to its neighbours only once.

The evolution of the cascade follows the breadth-first search (BFS) traversal, reminis-
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cent of agent-based implementations of models such as Susceptible-Infected or Independent-

Cascades [54] (see Fig. 1 for an example of the propagation). Since BFS is the core com-

putational algorithm, our model’s theoretical computational complexity is O(V + E) time,

where V is the number of vertices and E is the number of edges; thus, running on virtually

any modern machine is fast and efficient. While this isn’t a major consideration for small

systems such as the country-to-country trade network (order of magnitude – 150 nodes),

our model could be applied to other, more granular trading or supply chain systems, and

the computational complexity would become of greater importance. We find that the order

in which the neighbours are ”visited” alters the results slightly for the transfer function we

have chosen and can be devastating in other cases. We discuss it in detail in SI, but for the

purposes of the main text, we order the visitation schedule by neighbours’ capacity in an

ascending order.

D. Fitting

We find the best α that minimises the so-called pinball loss at the specified quantile q.

The pinball loss is defined as:

L(y, ŷ) =
1

n

n−1∑

i=0

q max (yi − ŷi, 0) + (1 − q) max (ŷi − yi, 0) (2)

Where y is a vector of real values and ŷ of model estimates for y. Therefore we want to

find α for our model that produces the vector ŷ such that L(y, ŷ) is at its minimum for a

provided quantile q. In our case, due to a large variance in the data, the y vector consists

of the logarithm of financial losses for each country, i.e., yi is the logarithm of the financial

loss of country i. This procedure is known as the quantile regression [29]. The idea is to

find a fit that best represents a chosen data quantile. This allows us to provide a prediction

interval instead of a point. The search for optimal α is conducted with the SciPy package

[50] and is always done using the Great Recession data.
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I. COUNTRY BY COUNTRY RESULTS

FIG. 1. Country-by-country prediction and real-data estimate in the training data (the Great

Recession).

In Fig. 1, we show how the prediction intervals fit the data estimates of GDP losses of the

Great Recession. We find that our model’s hit rate (i.e., the number of prediction intervals

overlapping with the data points) roughly follows linearly with ∆q, which is the difference

between the upper and lower quantiles. Detailed results of this relation are shown in the

next section. The tail end of the losses starts exhibiting the effects of “little to no change”

discussed in the main text. We omit countries for which we do not have sufficient data or

did not experience a loss in our real value estimation.

II. ALTERNATIVE HYPER-PARAMETERS

Here, we discuss our model’s hit rate and interval score as evaluated on the Great Reces-

sion and the Korean peninsula conflict analysis. We consider the dependence of the results

on a) the transfer function, b) the order in which the neighbours are affected, and c) the

timespan used for our real value estimates of losses.

The interval score [1], which penalises the model for large prediction intervals, is defined

as:

I(y, ŷ; ∆q) = ŷu − ŷl +
2

1 − ∆q
(ŷl − y)[y < ŷl] +

2

1 − ∆q
(y − ŷu)[y > ŷu], (1)

∗ lukasz@allfed.info
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FIG. 2. Model performance in various conditions. The first two rows consider the Great Recession

fit. The last two rows predict the performance of the Korean conflict using the parameters found

with the Great Recession data. Each column corresponds to a different timespan used for the

estimation of the real value of losses in the Great Recession (see Methods in the main text). Rows

one and three show the interval score values (the lower, the better), while two and four the hit rate

(higher is better). Colours indicate the different transfer functions, while line styles the ordering

of neighbours visited during the graph traversal.
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where y is the real value, ŷ is the model’s predictions. ŷu and ŷl correspond to the upper

and lower quantile estimate, respectively, and ∆q is the difference between these quantiles.

[. . . ] is the Iverson bracket notation [2].

The hit rate is simply the number of prediction intervals which overlap with the target

data values.

Aside from the transfer function described in the main text (labelled as “beta” here), we

considered two other examples: Linear, defined as

T (ξ;α) = min(αξ, 1), (2)

and quadratic:

T (ξ;α) = max(min(αξ2 + (1 − α)ξ, 1), 0). (3)

The min and max functions are necessary to secure the mapping [0, 1] → [0, 1].

As far as the ordering of neighbours is concerned, we consider four cases: ascending and

descending (denoted by the first letter of the label in plots “A” or “D” respectively) by

either the node’s capacity (labelled as “GDP”) or the trade value (labelled as “TV”) with

the country initiating the transfer.

In Fig. 2, we show a series of panels illustrating all of those dependencies. The first four

panels are the interval score for the Great Recession fit, and the next four depict the hit

rate, both as a function of ∆q. Each column corresponds to a different timespan used (in

years; four are used in the main text). Colours indicate the transfer function while the style

of lines the neighbours’ order. The following (third) row shows the interval score calculated

for the Bloomberg analysis values, and the last row the hit rate for those values. In these

cases, we, as always, use α values found for the Great Recession. It is immediately apparent

that the linear transfer function is much more reliant on the choice of the ordering than

the other two. In the case of both of the ascending options, the linear transfer function

completely fails to fit the data. Therefore, in Fig. 3, we show the same plot, but these

two variants (linear and ascending) were removed. While there is not a definitive winner

that is best in all cases, for the timespan of two years, the “beta” variant seems to be most

appropriate, with quadratic being a close second, so this is the one used in the main text.

We do not argue that the beta transfer function is the best possible, but the investigation

4



FIG. 3. Model performance in various conditions with the worst performing variants removed.

The first two rows consider the Great Recession fit. The last two rows predict the performance

of the Korean conflict using the parameters found with the Great Recession data. Each column

corresponds to a different timespan used for the estimation of the real value of losses in the Great

Recession (see Methods in the main text). Rows one and three show the interval score values (the

lower, the better), while two and four the hit rate (higher is better). Colours indicate the different

transfer functions, while line styles the ordering of neighbours visited during the graph traversal.
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FIG. 4. Model financial loss predictions (Y-axis) vs actual losses (X-axis) in US dollars in the

Great Recession. The solid line is a visual guide for Y=X. In a perfect fit, all points would be on

the solid line. The coefficient of determination is R2 = 0.76 (calculated on a linear scale). Since

the USA’s loss is the initial condition for this scenario, its losses have been excluded here. Here,

we considered the timespan of two years and the descending by GDP ordering of neighbours.

of what would be the best function here is beyond the scope of this paper.

To give an example of how all this affects the results shown in the main text, in Fig. 4

and 5, we present alternative versions of Fig. 2 and Fig. 3 from the main text. Here,

we considered a timespan of 2 years for the purposes of fitting the model and visited the

neighbours in a descending GDP order. The model still performs relatively well; in fact, the

R2 for the Great Recession is higher, although the smaller losses are not as well represented

(i.e., the model skews more heavily towards large losses), and cumulative losses in some of

the validation scenarios require higher ∆q to fit all the scenarios.
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FIG. 5. Model predictions vs. our estimates of losses in historical scenarios and the Bloomberg

analysis of a potential Korean conflict. The Y-axis shows the financial losses in US dollars. Green

intervals are the output of our model, while grey are real-value estimates (i.e., target values). The

error bars are 25th to 75th percentiles. Here, we considered the timespan of two years and the

descending by GDP ordering of neighbours.

III. INDIA-PAKISTAN RESULTS IN RELATIVE METRICS

[1] T. Gneiting and A. E. Raftery, Strictly proper scoring rules, prediction, and estimation, Journal

of the American statistical Association 102, 359 (2007).

[2] D. E. Knuth, Two notes on notation, The American Mathematical Monthly 99, 403 (1992).
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FIG. 6. India-Pakistan conflict predictions. On the X-axis, we show India and Pakistan’s losses

as a percentage of the global GDP, and on the Y-axis, the total global loss (also as a percentage

of the global GDP). Results are 50% prediction intervals except for the orange line, in which the

only losses are India’s and Pakistan’s. Colours indicate the amount of trade diverted from India

and Pakistan to other countries
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FIG. 7. World map indicating relative losses (median prediction) for each country (as long as we

have sufficient data to do so) in the example scenario of 2.7% and 11.6% initial capacity losses in

India and Pakistan, respectively
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