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Abstract

Due to the ready availability of tree leaves in many

geographies, the alternative food of leaf concentrate

currently has the potential to alleviate hunger in over

800 million people. It is therefore potentially highly

impactful to determine the edibility of leaf concen-

trates, which are in the same regions as the world’s
most undernourished populations. Unfortunately, the

toxicity of leaf concentrate for most common tree leaf

types has not been screened and the cost of doing so

demands a prioritization. This preliminary study

explores this potential solution to world hunger by

finding the forest classes most likely to offer proximate

access to the world’s hungry, thus providing the basis

for a prioritized list of leaf types to screen for toxicity.

Specifically, this study describes a novel methodology

for mapping available green leaf biomass and

corresponding forest classes (e.g., tropical moist decidu-

ous forest), and their spatial relationship to the global

distribution of people who are underweight. These

results will be useful for developing a targeted list of

tree species to conduct leaf toxicity analysis on, in the

interest of developing leaves as an alternative food

source for both current malnutrition problems and

global catastrophic scenarios.
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1 | INTRODUCTION

More than 820 million people are currently undernourished and face chronic food deprivation
throughout the world (Food and Agriculture Organization of the United Nations [FAO], 2018).
Children under the age of 5 are the hardest hit (Bhutta et al., 2017; McDonald et al., 2013;
United Nations Children’s Fund [UNICEF], 2005). According to the Global Nutrition Report
(GNR), 150.8 million are stunted (impaired growth and development that children experience
from chronic poor nutrition) and 50.5 million children under 5 are wasted (acute malnutrition)
(GNR, 2018). Overall, 20 million babies are born of low birth weight each year and a third of
reproductive-age women are anemic (GNR, 2018). This is unnecessary, as previous research has
shown that alternative food supplies could support the entire human population even in the
most extreme disaster that eliminates all conventional agriculture (Denkenberger &
Pearce, 2014, 2015). In such a disaster, humanity’s food intake could actually be improved over
the current nonuniform distribution and all lives could be maintained on the basis of caloric
intake by converting carbon sources like dead trees (wood) and leaves to human-edible food
(Denkenberger & Pearce, 2016, 2018a). Even more surprisingly, preliminary calculations show
that a modest diversity of alternative foods could supply a balanced diet of macronutrients and
micronutrients (Denkenberger & Pearce, 2018b) to maintain reasonable human health
(Shenkin, 2006). Some alternative foods, including extracting calories from leaves, would be
helpful in a different class of catastrophes, those that disrupt electricity such as an extreme solar
storm (Cole et al., 2016), or even a combination of catastrophes (Denkenberger et al., 2017).
Even without any extreme events, it is important that a resilient global food system is continu-
ous (i.e., it is able to maintain caloric intake consistently so that people do not starve or suffer
from the detrimental effects of hunger intermittently) (Seekell et al., 2017). In the most extreme
circumstances of a sun-blocking global catastrophe, the largest challenge to feeding the global
population lies in between the time that stored food is consumed (about 6 months) and the
transition to alternative foods following the catastrophe (about 1 year) (Denkenberger &
Pearce, 2014, 2015). Of the alternative food solutions that could be ramped up in this time
period, the best theoretical solution is to use leaves killed by the catastrophe (as opposed to
leaves that are depleted of nutrients and shed naturally called leaf litter), because of their wide
availability and reasonable price in comparison with other alternative foods (Denkenberger
et al., 2018). It is possible to grind and press leaves, boil the fluid, and then coagulate the resul-
tant liquid as leaf concentrate into food, which contains �8% of the dry matter of the original
leaves (Leaf for Life, 2019). The remaining unused liquid contains much of the toxins and has
been considered unfit for human consumption (Kennedy, 1993). Although yields of leaf concen-
trate made at the household scale are lower with nonindustrial techniques (Kennedy, 1993),
conducting this process in households would be more widely accessible and could contribute to
hunger alleviation now. However, making humanly consumable food at a global level from tree
leaves in this manner or in teas is challenging because (a) only a small fraction of the leaves’
calories can be extracted (e.g., in black tea, �20% of the total calories of the proteins, carbohy-
drates, and lipids make it into the liquid [Belitz et al., 2009]); (b) eating tree leaf-based teas is
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uncommon, although in some parts of the world, pine needle tea is already consumed (Kim &
Chung, 2000); (c) more information is needed on the percentage of existing tree leaves that
could be harvested sustainably from the many types of trees; and (d) there have not been
enough studies to gauge the human toxicity leaf extract from common tree leaf types.

To overcome this last challenge (d), a recent study (Pearce et al., 2019) provided a new
methodology for obtaining rapid toxics screening of common leaf concentrates using a non-
targeted approach with an ultrahigh-resolution hybrid ion trap orbitrap mass spectrometer with
electrospray ionization (ESI) coupled to an ultrahigh-pressure two-dimensional liquid chroma-
tography system. Identified chemicals by the nontargeted approach are then cross-referenced
with the OpenFoodTox database (Bassan et al., 2018) to identify toxic chemicals. Identified
toxins are then screened for formula validation and evaluated for risk as a food, and further
analysis is needed with standards to rule out toxicity. Although this initial screening is faster
and less expensive than past methods, it still presents prohibitive costs for running against all of
the world’s tree species. Therefore, the objective of this study is to provide a means of prioritiza-
tion to identify the leaf types that should be screened first. Given that leaf concentrate as an
alternative food has the potential to alleviate hunger in over 800 million people today
(FAO, 2018), it appears appropriate to target leaf types where the most malnourished people
live. With limited resources for leaf toxicity studies, which types of forests (forest classes) and
the trees within them should have their leaves targeted first for toxilogical analysis? This is pri-
marily an applied geography problem, and this preliminary study seeks to solve that problem
by determining these priorities. This study describes a methodology for mapping available green
leaf biomass and forest classes, and their spatial relationship to the distribution of global malnu-
trition. It builds on methods described by Center for International Earth Science Information
Network—CIESIN—Columbia University (2005), Doxsey-Whitfield et al. (2015), and Ruesch
and Gibbs (2008). The output of this new methodology will be useful for developing more
detailed tree species studies, which will form the basis for leaf toxicity screenings, in the interest
of developing leaves as an alternative food source for both current malnutrition problems and
catastrophic scenarios.

2 | METHODS

2.1 | Data

Data were selected on the basis of being open accessible and the most recent high-quality avail-
able and are detailed below. Datasets have been chosen from the years 2000–2002, a date range
with the most complete corresponding global data available for both leaf biomass and malnutri-
tion. The data developed as part of this project are available open access in tabular format
(Fist, 2019), and users can look in detail at regions on an interactive map format housed at
http://bit.ly/allfed-leaf-map.

2.1.1 | Global malnutrition

In order to estimate the global spatial data on malnutrition at a subnational level, the global
subnational prevalence of child malnutrition in 2002 developed by the National Aeronautics
and Space Administration (NASA) Socioeconomic Data and Applications Center (SEDAC) is
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used here (Center for International Earth Science Information Network—CIESIN—Columbia
University, 2005). The total global population for 2000 broken down by region was also from
SEDAC (2019).

2.1.2 | Leaf biomass

The Intergovernmental Panel on Climate Change (IPCC) provides a high-resolution map of liv-
ing biomass of carbon for the year 2000 (Ruesch & Gibbs, 2008).

2.2 | Calculating total number of people suffering from malnutrition
for each region

It is assumed that the SEDAC underweightness data within a region (which describes levels of
underweightness in children under 5) are a good proxy for rates of malnutrition in general in
that region. This is because children depend on adults for their care and they are not fed if there
is no enough food in the region (LaFollette & May, 1996). It is also assumed that most of the
regions with no SEDAC data or a poor subnational data breakdown do not currently have sig-
nificant malnutrition problems. For example, two such regions are the United States and
Canada, which are both experiencing an epidemic of obesity (Pozza & Isidori, 2018; Upadhyay
et al., 2018), and globally, 38.9% of adults are overweight or obese (GNR, 2018).

To convert the general data into the total number of people suffering from malnutrition for
each region, the total population in each region is multiplied by the fraction given by propor-
tion of underweight children under 5. This assumes that if levels of childhood malnutrition are
roughly similar to levels of adult malnutrition in each area, then this product will provide a rea-
sonable first-order approximation for the total number of people suffering from malnutrition in
a given region. Next, the SEDAC population data (a 30-arc second raster grid) are mapped onto
the SEDAC malnutrition regions (a polygon vector dataset) in order to sum population in those
regions to establish absolute levels of malnutrition.

The resulting dataset can be analyzed at both global and regional levels. Here, the regions of
Uttar Pradesh in India and North East Nigeria are used as examples, being two regions with
high levels of malnutrition. They also represent areas where this approach would be most viable
as poor people live within or near forests.

2.3 | Estimating the spatial distribution of tree species and leaf
biomass

The total biomass of carbon from Lawrence Berkeley National Laboratory (Ruesch &
Gibbs, 2008) needs to be translated into a reasonably accurate estimate leaf biomass, broken
down by forest type. First, the amount of this carbon, which is above ground in trees, is deter-
mined. Second, the proportion of a tree’s biomass that is carbon is found. Finally, the propor-
tion of a tree’s biomass, which is made up of leaves, is applied to determine the total leaf
biomass available in each region.

The majority of the biomass determined by Ruesch and Gibbs (2008) is contained in trees,
rather than grasses, crops, and so forth. To determine the specific amount of tree biomass in the
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dataset, the global spatial distribution of trees is required, for which the European Space
Agency (ESA, 2019) global land cover dataset was used. The relevant land classes for tree cover
are mapped noting that the following classes have been excluded: mountain systems, polar
regions, desert regions, steppes, shrubland, and water. These classes were excluded due to their
geographic isolation, hostility, and difficulty of leaf harvesting (e.g., it would be impractical to
assume widespread leaf harvesting). The proportion of a tree’s dry biomass that is carbon is
assumed to be 47% (Lamlom & Savidge, 2006), whereas the percentage of a tree’s biomass,
which is made up of leaves, is assumed to be 1% (Poorter et al., 2012). It should be pointed out
that for the purposes of this study, the rapid ramp rates of leaf concentrate make the 1% leaf
biomass of most interest, but that remaining wood could be used for alternative foods by, for
example, feeding it to beetles and mushrooms and the remaining material to rats.

These values are combined to generate a map of leaf biomass across different forest
classifications.

2.4 | Combining malnutrition density and leaf biomass to determine
forest zones to evaluate

First, forest types, which are most common in regions with high levels of malnutrition, are
determined by taking the earlier generated regional underweightness data and referencing it
against forest zone data (ESA, 2019). These data can be closely examined to understand which
forest classifications are most prevalent in the areas suffering most from malnutrition. Again,
regions in India and Nigeria are used as examples. Next, the most common forest class by popu-
lation region area is mapped on the basis of (a) total forest area and (b) total leaf biomass. This
analysis can provide a priority list for both global and regional forest types to concentrate alter-
native food research upon, on the basis of potential lives saved. However, to determine if there
are actually enough leaves to be useful, a final analysis is made to derive the total leaf biomass
available in each region across all forest classes, per individual suffering from malnutrition.

These data are available in tabular format (Fist, 2019), and users can look in detail at
regions on an interactive map format housed at http://bit.ly/allfed-leaf-map.

3 | RESULTS

Following the methods outlined above, the proportion of children who are both under 5 years
old and underweight is mapped in Figure 1a, and the proportion of the total population who
are under 5 years old is shown in Figure 1b. The proxy for general malnutrition in a region is
described by the black-outlined boundaries in Figure 1. The results, being derived from SEDAC
region boundaries, have a higher resolution in areas with a larger malnutrition problem, such
as sub-Saharan Africa. As Figure 1 shows, these boundaries do not give a particularly good idea
of how malnutrition levels break down within certain regions, such as Russia. In addition, these
results do not provide any information for countries where no malnutrition data are present,
which covers North America, Western Europe, Australia/New Zealand, and several others.

The global population for 2000 is shown in Figure 2. The population data are mapped onto
the malnutrition regions shown in Figures 1a,b and 3a,b. The maps in Figure 3 emphasize the
large number of children suffering from malnutrition in South and Southeast Asia, in particular
India and Indonesia.
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With this dataset, individual regions can be analyzed. This is shown in Figure 4 for the state
of Uttar Pradesh in India and in Figure 5 for North East Nigeria.

In Uttar Pradesh alone (Figure 4a), there are over 10 million underweight children under
5, composing a shocking 51% of the total number of children under 5. Using the methodology
described above, the inferred total underweight population in this region is 89 million, in a total
population of 173 million.

Figure 4b shows the same set of data for North East Nigeria, where the total population is
22 million, the percent of children under 5 who are underweight is 38%, and the subsequent
inferred underweight population under 5 and in general is 1.4 million and 8.3 million,
respectively.

F I GURE 1 (a) Proportion of children who are both under 5 years old and underweight and (b) proportion

of the total population who are under 5 years old
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F I GURE 3 (a) Total population who are both under 5 years old and underweight. (b) Total population who

are underweight, assuming that the percent of children who are underweight can be extrapolated to the total

population. Regions with no data available are shown in black
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F I GURE 4 (a) Details of the output from the calculations for Uttar Pradesh. (b) Details of the output from

the calculations for North East Nigeria

FIST ET AL. 9



F I GURE 5 (a) Tonnes of living biomass of carbon per hectare in 2000. (b) The regions in the globe covered

with forests and broken down by type of forest zone. (c) Leaf biomass across different forest classifications

shown in (b)
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The next step is to supplement the analysis of the global distribution of hunger with infor-
mation available for leaf biomass in each of these regions.

From these data, it is clear that the majority of global living biomass is in the equatorial
region with a typical factor of �2� higher biomass per hectare than even the most biomass-
dense northern or southern regions.

Using the ESA (2019) global land cover data, the forested regions of the world broken
down by broad class are shown in Figure 5b. These data were cross-validated against datasets
from the Global Forest Watch (2000) Tree Cover and NASA MODIS Land Cover (2019). Of
the forest classes excluded as per the methodology described above, mountain systems are
the classes with the most forest cover based on biomass. However, for this analysis, the
mountain regions were still excluded due to the relative difficulty of harvesting leaves in
such environments.

Combining the data shown in Figure 5a,b, by using the carbon proportion of a tree’s bio-
mass together with the proportion of a tree’s biomass, which is made up of leaves, gives us the
data shown in Figure 5c: a map of leaf biomass in tonnes/ha across different forest
classifications.

The population underweight data are overlaid with regions of available forest and shown in
Figure 6a.

Figure 6b zooms in on the forest class and malnutrition data in India. There are three pri-
mary forest classifications for India: tropical dry forests, tropical moist deciduous forests, and
tropical rainforests. Figure 6b indicates that concentrating on leaves of trees common to tropical
dry forests would provide the most malnutrition reduction potential in this region, as this forest
class has the most local coverage and total leaf biomass. These data can also be found in tabular
format (Fist, 2019). In addition, as can be seen in Figure 6b, leaf extract could not be used to
reduce malnutrition in all regions in India (most notably in the west) unless leaf biomass is
transported as there are regions that are suffering from malnutrition issues (shown in red) with
no forests available.

Nigeria shares the same types of forests with India. Similarly, not all of the parts of Nigeria
suffering from malnutrition have access to forests (see Figure 6c). Transportation would be nec-
essary to use leaf extract to control malnutrition within Nigeria. This is complicated by the sub-
regional distribution of linguistic groups (Hansford et al., 1976). Figure 6c indicates that trees
with tropical moist deciduous forests should be evaluated first to use leaf extract as an alterna-
tive food in Nigeria. Other countries can use the datasets provided with this study to evaluate
priority lists for their own regions.

The most common forest class by region is shown in Figure 7a,b, by area and by total bio-
mass, respectively. Note the priorities for some regions like Argentina.

Finally, the total leaf biomass available in each region across all forest classes per individual
suffering from malnutrition is shown in Figure 8.

Over the entire Earth, the forest classifications that could provide alternative food with leaf
extract to people suffering from malnutrition are shown in Table 1. As can be seen in Table 1,
the forest types, which should be more closely evaluated to end acute hunger with leaf extract,
are all tropical: moist deciduous forests, dry forests, and rainforests account for the vast majority
of underweight global population.

Table 2 shows the total available amount of dry leaf biomass across each of the forest classes
considered in this study. These data are especially relevant for sun-obscuring global catastrophe
scenarios, where a large amount of alternative food would be required to feed the world’s
population.
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F I GURE 6 (a) Population underweight data (white ! red; black where no data) overlaid with regions of

available forest (green). (b) Population underweight data (white ! red; black where no data) versus forest

classifications (dots), India. (c) Population underweight data (white ! red; black where no data) versus forest

classifications in Nigeria
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4 | DISCUSSION

The analysis presented in this study has several limitations. First, it is limited by the timeliness
of datasets, with all datasets having reference years within 2000–2002, which affect the results
as all inputs have changed. Global population, number of malnourished individuals, and tree
cover would all reasonably be expected to have changed in the intervening time period. How-
ever, this was the best available complete data and provides good semiquantitative indicators
for both research and policy action. Future work is recommended that would utilize remote
sensing (Djomo & Chimi, 2017; Drake et al., 2003; Halme et al., 2019; Heiskanen, 2006; Zheng
et al., 2007) and normalized hotspot-signature vegetation index (NHVI), leaf area index (LAI),

F I GURE 7 The most prevalent forest classification by population region based on (a) total forested area

and (b) total leaf biomass available
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F I GURE 8 Leaf dry biomass per underweight individual in tonnes/person shown in the population

regions. Note that the categories in the legend are on a log scale

TAB L E 1 Forest classifications that could provide alternative food with leaf extract to the most number of

people suffering from malnutrition

Forest classification
Global underweight population in region
where forest classification is the most prevalent

Tropical moist deciduous forest 348,514,567

Tropical dry forest 309,536,295

Tropical rainforest 226,873,692

Subtropical humid forest 37,503,126

Temperate continental forest 17,900,192

Subtropical dry forest 12,574,476

Boreal coniferous forest 4,988,328

Temperate oceanic forest 117,119

Total 958,007,795
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normalized difference vegetation index (NDVI), and bidirectional reflectance distribution func-
tion (BRDF) techniques to estimate leaf biomass (Cunliffe et al., 2020; Hasegawa et al., 2010;
Sader et al., 1989; Zhu & Liu, 2015).

In addition, not all areas had data available (black regions in figures). With global climate
change accelerating (Bevis et al., 2019; Edenhofer, 2015; Houghton, 1996; Schuur et al., 2015;
Turetsky et al., 2019), the coverage of forest area dataset (forest classes) would also be expected
to change into the future (Gatti et al., 2019). The methodology to calculate leaf biomass from
the global carbon stock data has several sources of assumption that could be further refined
when detailed mass ratio analyses of leaves for trees in specific regions have been conducted.
Additionally, in this study, mountain regions were excluded, but if technically viable means
was found to harvest leaves in those regions, they should be included in future analysis. Fur-
thermore, other types of leaves could be evaluated (e.g., on shrubs) that may alter the
priority list.

The results of this study are useful as they give a strong indication of the types of forests that
should be concentrated on for future research surrounding using leaves as alternative foods to
help reduce malnutrition in the short term. There are also clear areas where future spatial work
is desired to make further use of this study. The suggested next step in this analysis is to break
down the forest classes in this study into individual tree species in different regions and/or
develop a global dataset showing tree species distribution. The overall technical viability of this
approach to solving current hunger issues needs considerably more study as current hunger is
primarily a social construction (Maurer & Sobal, 1995) due to poor governance (Birner, 2007) or
war (Toole & Waldman, 1993), even short distances for transport can be technically or economi-
cally prohibitive for the world’s poor. This analysis could thus be enhanced by considering the
impact of both property (e.g., who owns the forests) and shipping across regions internally in a
country as well as international shipping and the impact of regional versus distributed
processing. In addition, the methods of leaf harvesting and processing to make leaf protein con-
centrate (LPC) need considerably more technical investigation to find the most efficient and
sustainable methods to determine viability particularly for acute hunger. For example, what
percent of leaves can be easily harvested from specific tree species in specific regions without
leading to tree death and deforestation for current hunger? It can be noted that after a major

TAB L E 2 The total dry leaf biomass in tonnes as a function of forest classification

Forest classification Total dry leaf biomass (tonnes)

Tropical rainforest 4,383,160,948

Tropical moist deciduous forest 1,545,050,205

Tropical dry forest 621,972,869

Subtropical humid forest 521,891,853

Boreal coniferous forest 432,035,896

Temperate continental forest 186,085,629

Boreal tundra woodland 112,470,103

Temperate oceanic forest 120,400,200

Subtropical dry forest 95,440,491

Total 8,018,508,194
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GCR event, the trees would be dead anyway. Future work is also necessary to evaluate the
impact of unintended consequences (e.g., deforestation and carbon emissions as a result of
widespread LPC extraction using felling methods). Future work could also update the input
data used in this analysis. For example, malnutrition data are now available from the Food
Security Portal (2019).

In addition, these same methods as used in this study could be used for priority determina-
tion of forest types to study for the viability of leaf concentrate as an alternative food in sun-
obscuring global catastrophic risk (GCR) scenarios. In these cases, a more global view of leaf
biomass availability would be important, rather than one specifically targeted towards more
malnourished regions.

Finally, additional work is needed to be able to determine how many people could be fed
on the existing leaf biomass in a region, harvested to address acute malnutrition sustainably
(e.g., harvesting some percentage of leaves by pulling them off the tree) as well as using
more extreme methods for sun-obscuring GCR scenarios (e.g., cut the trees down and harvest
all leaves, as trees will die regardless in such an event). For the former, the percentage of
leaves that can be sustainably harvested from the relevant different tree species is needed.
For both scenarios, the percentage of dry weight of leaves that can be extracted as edible
food for different tree species would also need to be experimentally determined. These tech-
niques would need to be weighed against other solutions previously discussed in a partial
sun-obscuring disaster as well as new solutions such as scaling up greenhouse crop produc-
tion (Alvarado et al., 2020), microbial protein production from hydrogen conversion
(Martínez et al., 2021), or biorefinery repurposing for sugar production (Throup et al., 2020).
Finally, it may be possible that a lower caloric intake than the World Health Organization
(WHO, 2012) recommendations is possible, so more clarity is required in the caloric input
necessary to sustain human life to calculate the mass of leaf biomass that needs to be avail-
able in all scenarios.

5 | CONCLUSIONS

This study successfully applied a new approach for mapping available green leaf biomass and
corresponding forest classes, and their spatial relationship to the global distribution of under-
weight people. It was able to find the forest classes most likely to offer proximate access to the
world’s hungry to use for alternative food from leaf concentrate. These forest classes are moist
deciduous tropical forests, dry tropical forests, and tropical rainforests. These results will be use-
ful for developing a targeted list of tree species to conduct leaf toxicity analysis on in future
studies, in order to develop leaves as an alternative food source for both current malnutrition
and severe catastrophic scenarios.
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