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The Fragile State of Industrial Agriculture: Estimating Crop
Yield Reductions in a Global Catastrophic Infrastructure
Loss Scenario

Jessica Moersdorf, Morgan Rivers, David Denkenberger, Lutz Breuer,
and Florian Ulrich Jehn*

Modern civilization relies on a complex, globally interconnected industrial
agriculture system to produce food. Its unprecedented yields hinge on external
inputs like machinery, fertilizers, and pesticides, rendering it vulnerable to
disruptions in production and international trade. Such a disruption could be
caused by large-scale damage to the electrical grid. Solar storms, nuclear
detonations in the upper atmosphere, pandemics, or cyber-attacks, could
cause this severe damage to electrical infrastructure. To assess the impact of
such a global catastrophic infrastructure loss on major food crops (corn, rice,
soybean, wheat), we employ a generalized linear model. The predictions show
a crop-specific yield reduction between 15% and 37% in phase 1, the year
after the catastrophe, assuming rationed use of fertilizers, pesticides, and fuel
stocks. In phase 2, when all stocks are depleted, yields decrease by 35%–48%.
Soybean is less affected in phase 1, while all crops experience strong declines
in phase 2. Europe, North and South America, and parts of India, China, and
Indonesia face major yield reductions, potentially up to 75%, while most
African countries are less affected. These findings underscore the necessity
for preparation by highlighting the vulnerability of the food system.

1. Introduction

Global food security is at risk from major disruptions.[1] Over
time humanity has built an increasingly complex food system,
with global trade connecting food producers and consumers. The
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hope being that this would make the food
system more resilient to disruptions.[1]

This seems to have worked partially
and many systemic risk studies describe
the food system as “robust, yet fragile”,
meaning that it is able to buffer smaller
shocks more easily, but has become more
vulnerable to major ones.[2–4] This in-
creased vulnerability to major shocks is
grounded in the finding that many of the
globally traded goods like virtual water,[5]

food commodities,[3] or fertilizer[6] are
concentrated into few, but major play-
ers like the United States. If these ma-
jor players stopped trading, the whole sys-
tem would be in danger, due to cascading
failure.[4,7,8] These ideas from systemic
risk have been picked up in the study of
global catastrophic risks as well.[9,10] The
food system is not only increasingly vul-
nerable to major disruptions like mul-
tiple breadbasket failures but[11–13] there
are also a variety of global catastrophic
risks, which could impact the food

system. These include asteroid/comet impacts, volcanic erup-
tions, ecosystem collapse, nuclear war, and termination shock
caused by solar radiation management.[14–16] This is concerning
as society is highly dependent on modern agriculture. It enables
most of the population to occupy themselves with tasks beyond
food production.[17,18]
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Agriculture facilitated the emergence of complex societies all
around the world[19] and is needed to sustain it. Agricultural prac-
tices developed simultaneously in multiple different cultures, but
yields were low and crop production labor intensive: despite its
merits, food production in agricultural societies still required the
involvement of most of the population to feed everyone. It was
not until the rise of modern technology which allowed the har-
nessing of energy from fossil fuels and its introduction into agri-
culture in the shape of machinery, artificial fertilizer, and pesti-
cides during the twentieth century that human populations could
grow substantially and employ a decreasing fraction of society in
agriculture. This stark increase was supported by an expansion
of cropland[20] and by substantially decreasing the number of hu-
man work hours required to produce one ton of grain.[19] The
surplus in food and energy production can only be maintained
through high external inputs into the production system in the
form of machinery, fertilizers, and pesticides.[21] The significance
of outside influences varies from one country to another because
there is no single standard agricultural production system, and
there are significant variations between countries and global re-
gions. Nevertheless, even in countries with lower reliance on in-
dustry, they are integrated into the increasingly interconnected
global system, which means they are likely to be affected by the
repercussions of widespread failures.[1,2] These characteristics,
marked by a strong dependence on industry and global inter-
connectivity, have emerged in the past century and have rapidly
spread, bringing about profound and enduring societal transfor-
mations.

In light of this, it becomes evident that global society de-
pends on a reliable food supply and this food supply is only
stable as long as the constant flow of inputs like fertilizer is
possible. However, significant disturbances have the potential
to unsettle the production of those inputs, as well as the food
system itself. While extensive research has been conducted on
regional hazards,[22–24] as well as global, long-term disruptions
such as environmental impacts,[25,26] challenges related to cli-
mate change,[12,27–29] and the decreasing rates of yield increase,[30]

little is known about sudden, global events. On the effects of the
disruptions of global trade and industrial infrastructure on agri-
culture, only exploratory research exists.[31] While such events are
seen as unlikely, the COVID-19 pandemic has demonstrated that
events deemed highly unlikely can still occur at any given time
and has exposed the lack of preparedness in most countries.[32,33]

This paper models the anticipated change in agricultural yield
in such a sudden and global disruption of the infrastructure
needed to sustain the food system, a global catastrophic infras-
tructure loss scenario. The underlying premise of all possible
causes for global catastrophic infrastructure loss is a global-scale
disruption of the electrical grid. Given the widespread depen-
dence of global industry and society on electricity, a global electri-
cal failure would essentially bring most industries and machinery
to a standstill. The four main potential causes for global catas-
trophic infrastructure loss include:

i. High Altitude Electromagnetic Pulses (HEMP) result from
nuclear detonations high in the atmosphere. They cause no
immediate harm to humans but can almost instantly dam-
age electronics. Detonating a nuclear warhead emits gamma
rays that interact with the atmosphere, creating an intense

electromagnetic pulse (EMP) spreading at light speed. The
disruptive EMP causes electronics to suffer overvoltage, like a
more powerful lightning strike.[34] The affected area depends
on the detonation’s power and altitude; one detonation could
affect the entire contiguous United States.[34] Multiple war-
heads during a nuclear conflict could lead to a global catas-
trophe. Recovery would likely be difficult, as critical infras-
tructure like large power transformers are often highly cus-
tomized and currently need 12–24 months for production.[35]

ii. A similar risk is posed by solar storms. Solar activity during
storms can present itself in the form of solar flares, coro-
nal mass ejections, or both. Solar flares are bursts of x- and
gamma rays and extreme ultraviolet radiation that can dis-
rupt communication technology.[36–38] Other research em-
phasizes the effect of coronal mass ejections on the Amer-
ican power grid.[39] This type of solar activity releases super-
charged plasma particles toward the earth, creating a geo-
magnetic storm that acts like a natural EMP toward the elec-
trical grid with potentially devastating consequences.[35,36,40]

Like HEMPs, coronal mass ejections can permanently dam-
age large power transformers and thus potentially cause
power outages lasting for years.[35]

iii. Globally coordinated cyber-attacks on many electrical grids
or critical industrial infrastructures pose a threat on a global
catastrophic scale. Among the various systems under attack,
power generation is a prime target for these cyber-attacks.[41]

Until now, such attacks have been relatively limited in scope,
but there is concern that more advanced and motivated ac-
tors could cause significant damage and disruption to these
essential systems on a larger scale.

iv. An extreme pandemic could cause people to be too fearful
to report to work in critical industries, resulting in a col-
lapse of the power grid and other infrastructure, as mainte-
nance ceases.[42] This pandemic would have to be consider-
ably more deadly than COVID-19 to create such an effect.

All this highlights that it is important to increase the sta-
bility of the global food system. Resilience efforts for the food
production system vary depending on the type of catastrophe.
For sun-blocking scenarios like a supervolcanic eruption this in-
cludes the exploration and preparation of resilient foods such
as single-cell protein from natural gas,[43] hydrogen,[44] sugar
from wood,[45] greenhouses,[46] or seaweed.[47] More traditional
resilience measures include food storage, diversification of agri-
cultural practices, crop insurance, or regulations of the agri-
cultural market.[1,15] Most of these solutions, however, depend
on industrial infrastructure in one way or another or assume
that only a smaller subsection of global food production is im-
pacted. Therefore, for global catastrophic infrastructure loss sce-
narios, the adaptation of classical agricultural practices is the
main method to ensure food security. Earlier work has suggested
that this could revert agricultural yield to preindustrial levels.[31]

This research aims to offer a more accurate and geographically
detailed global-scale assessment of the potential impact of catas-
trophic infrastructure loss on crop production.

Based on a multiple regression model using spatial predictors,
we project yields for a worst-case scenario to understand the ef-
fects of a disturbance of industrial infrastructure on modern agri-
culture.
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Table 1. Datasets Used for Calibrating the Generalized Linear Model and Simulating Loss of Industry Scenario Conditions.

Dataset Definition Spatial resolution Time Period Source Available online

SPAM yield (kg ha−1), harvested area
(ha/cell)

5 arcmin 22010 Yu et al. (2020)[57] https://doi.org/10.7910/DVN/
PRFF8V

GAEZ v4 AEZ Factors thermal regime class, moisture
regime class, soil/terrain-related
class

5 arcmin,5
arcmin,30 arcsec

22010 Fischer (2021)[58] https://gaez.fao.org/pages/data-
viewer

PEST-CHEMGRIDS application rate (kg/ha) of 20 active
ingredients for 10 dominant crops
and four aggregated crop classes

5 arcmin 22015 Maggi et al. (2019)[59] https://doi.org/10.7927/weq9-
pv30

Global Map of Irrigation Areas
– Version 5

area equipped for irrigation (% of
total area)

5 arcmin 22005 Siebert et al. (2013)[60] https://data.apps.fao.org/map/
catalog/srv/api/records/
f79213a0-88fd-11da-a88f-
000d939bc5d8

AQUASTAT – FAO’s Global
Information System on
Water and Agriculture

Area (1000 hectares) equipped for:

Irrigation (Equipped Lowland Areas,
Spate Irrigation, Total)

Full control irrigation (Surface,
Sprinkler, Localized, Total, Actually
Irrigated)

Power irrigation

Country level Around
mid-2010s

FAO (2019)[61] http://fao.org/aquastat/statistics/
query/index.html?lang=en

Gridded nitrogen and
phosphorus fertilizer use

N and P application rate (g/m2) 0.5◦degree 11900-2013 Lu and TIan (2016)[62] https://doi.pangaea.de/10.1594/
PANGAEA.863323

Global gridded dataset of
manure nitrogen
production and application

N manure application (kg/km2) 5 arcmin 11860-2014 Zhang et al. (2017)[63] https://doi.pangaea.de/10.1594/
PANGAEA.871980

A global gridded data set on
tillage (V. 1.1)

six tillage systems (dominant
system/cell)

5 arcmin Aaround
2005

Porwollik et al.
(2019)[64]

https:
//doi.org/10.5880/PIK.2019.009

2. Experimental Section

2.1. Selection of Model Crops and Influencing Factors

This study focused on modeling the yields of four fundamental crops:
wheat, corn, rice, and soybeans. These crops were deliberately chosen
due to their pivotal role as staple foods, as determined by analyzing data
from FAOSTAT, which includes their annual production quantities and har-
vested areas. Together, these four crops account for a substantial 57% of
the calories and 61% of the protein in the human diet.[48] By focusing on
those crops, it had a good proxy for the food system overall. This approach
allows to represent the food system comprehensively without the need to
examine the vast array of food commodities that exist.

On a global scale, wheat and rice is the primary staples in the human
diet.[48–50] Meanwhile, corn and soybean production are also directed to-
ward livestock and aquaculture feed in large quantities.[51,52] In the event
of a global catastrophic infrastructure loss, both corn and soybean crops
had large potential because their production could be redirected for hu-
man consumption. In addition, soybeans could play a pivotal role in main-
taining nitrogen availability in the soil in the absence of industrial fertiliz-
ers, as they can fix nitrogen from the air.

Crop yield was influenced by a variety of factors, like crop variety, nutri-
ents, water, climate, mechanization, seed availability, knowledge of farm-
ers, pests, and diseases.[30,53,54] The yield influencing factors used as
model inputs for the analysis were chosen based on two selection crite-
ria:

1) We identified key factors that played a pivotal role in the progress of
agriculture from preindustrial to modern times. Consequently, mecha-

nization, fertilizer, irrigation, and pesticides were selected in conjunc-
tion with enhanced crop varieties.[19,21,55]

2) All factors with inadequate data availability that fell short of the spa-
tial data resolution of five arcminutes at a global scale were excluded.
Therefore, the improved varieties had to be excluded in the second
step due to insufficient data availability. This exclusion of relevant vari-
ables likely leads to an underestimation of yield loss, but could not be
avoided as no global, high-quality data was available.

The availability of the factors listed above was directly dependent on the
management decisions of the farmer. However, there were also influential
elements like climatic conditions that could not be managed. To control for
their impact on crop yield, three climatic variables representing thermal,
moisture, and soil conditions were considered in the analysis.

2.2. Spatial Data

Global spatial datasets were sourced for each factor as well as for yields
under current conditions. Datasets were selected at five arcminutes resolu-
tion when available or downsampled to this resolution (Table 1; additional
information can be found in Description_input_data.pdf in the repository
of this paper[56]).

The N manure and N fertilizer application rate datasets from Table 1
were summed up into a combined variable N total, as the analysis was
only concerned with the effect reduced N input had on yield and not with
the effect of N input from different sources. Moreover, it was taken as a
measure to reduce the number of variables and possible multicollinearity
between them. Nitrogen management could not be considered due to a
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lack of suitable, global data. The data pre-processing described in the next
section was done before this merge, to be able to detect outliers.

Mechanization was the only selected factor that required the use of a
proxy as no spatially explicit data on the degree of mechanization in agri-
culture was available. The “global gridded data set on tillage (V. 1.1.)”[64]

was used as a surrogate to determine if an area was farmed with motor-
ized agricultural machinery or based on human and animal draft power.
A large factor in the classification of tillage systems was the involvement
of heavy machinery as it facilitates plowing soils in greater depth. Hence,
it was possible to use the tillage systems as a proxy to determine, which
systems rely on machinery for tilling and that do not. Other farm activities
were assumed such as sowing and harvesting were also carried out with
machinery if tilling was mechanized. Therefore, the tillage systems were
reclassified into either 0 = non-mechanized or 1 = mechanized. Conser-
vation agriculture was classified as mechanized even though tillage was
reduced to almost zero because currently conservation agriculture was
most widely adopted in North and South America and Australia[65] where
agriculture tends to be mostly mechanized.

Misalignment between input datasets had a significant impact on
model accuracy. If the spatial distribution of values did not match across
datasets, it could led to a misrepresentation of the relationship between
the variables under study. However, this issue was mitigated by using large
datasets to ensure a sufficient overlap for accurate relationship mapping.

2.3. Preprocessing and Statistical Yield Modeling

Before fitting the model, it pre-processed the data to allow for a robust
statistical analysis. The following operations were carried out for each crop
individually:

i. The values for crop yield in kg per hectare in each cell represent a vary-
ing portion of the specific crop’s harvested area ranging from 0.1 to
19344.3 ha. This large range in crop area per cell size could influence
the results of the analysis, as it gives each cell the same weight, inde-
pendent of the actual agricultural area in the cell. Therefore, all rows
containing values for harvested areas below 100 ha were removed. This
operation led to the deletion of 44%–72% of all data points (depend-
ing on the crop, as do all following ranges shown). However, these
cells contributed only between 1.6% and 3.2% of the total global crop
production summed up over the total crop-specific harvested area and
thus did not play an important part in global food security.

ii. Subsequently, missing values in the remaining datasets were ad-
dressed. Particularly the pesticides and mechanization data contained
missing values. Gap filling of missing data, e.g., through interpolation,
was not possible, as there was no established dependence of pesti-
cides and mechanization on the other variables, so these data points
were removed. In the N fertilizer column, missing values amounted to
1%–2.3% of total data points. The temperature, the moisture regime,
and the soil/terrain-related columns also had missing data points in
the range of 1.6%–2.2%. Cells with missing data for both data sets
were treated with the forward-filling method (carrying forward the last
observed value).

N fertilizer, the manure, the pesticides, and the yield contained implau-
sible values. To prevent extreme outliers from skewing the relationship,
all data with values above the 99.9th percentile for N fertilizer, manure
(99th percentile), N total, pesticides, and yield were removed. Given the
distribution of the remaining values and the values commonly reported
in the literature, these data points were more likely to be errors in the
input datasets than real information characterizing the relationship be-
tween yield and input factors. Even though there was reason to assume
that more values on both ends of the scale, albeit feasible, could be at-
tributed to calculation errors or relics of the downsampling approach, this
could not be validated and therefore, it was refrained from excluding more
values. Additional information on the data cleaning process and the ef-
fect of each operation on the metrics of the datasets can be found in

reports/Report_descriptions.pdf and reports/Descriptive_statistics.xlsx in
the repository of this paper[56]).

In the next step, for any multicollinearity present in the data was
checked. It can be detected by calculating the variance inflation factor[66]

for each predictor. The literature contained different threshold values for
when the VIF indicated serious multicollinearity. The most prominent
thresholds were specified as everything above five,[67] or as values above
ten[68] constitute the need for action. However, the VIF did not work well
for categorical variables if they had multiple levels. So instead, it compute
the generalized variance inflation factor (GVIF).[69] To make it compara-
ble across predictors with a differing number of levels, Fox and Monette

(1992) suggest using GVIF
1

2×Df with Df being equal to the number of lev-
els in each variable. Squaring this value yields the regular variance infla-
tion factor for predictors with one level so that the variance inflation fac-

tor thresholds could be applied. The squared GVIF
1

2×Df did not indicate
any multicollinearity among the variables for any crop (see the Model_VIF
sheet in reports/Model_results.xlsx in the repository of this paper[56]).

Multicollinearity, arising from the inclusion of both nitrogen and phos-
phorus fertilizer application rates, had a noticeable impact on model re-
sults. As these fertilizers are often applied together, the decision was made
to use nitrogen application as a proxy for nutrient input and exclude phos-
phorus application to mitigate multicollinearity.

As it is harder to maintain agricultural production in very cold, hot, dry,
or wet climates, an uneven distribution of observations among the levels
in the thermal and moisture regime classes was detected. For the thermal
regime, the differences were particularly stark as the coldest three climate
classes count with a very low number of observations. A highly uneven
distribution of observations could lead the model to misjudge the signifi-
cance of a predictor. To resolve the issue, the Temperate cool, Boreal, and
Arctic regimes were aggregated. The uneven distribution of observations
in the moisture regime was addressed by fusing the two lowest (M1 and
M2) and the two highest levels (M6 and M7) into one new level each: M2
= Length of Growing Period <120 days and M6 = Length of Growing Pe-
riod 270+ days. These merges do not reflect the best combinations for
each crop. The wheat model, for example, could have benefited from com-
bining levels T1 and T2. However, we refrained from performing different
merges for each crop to ensure comparability between the crops.

Adding the variables to the model consecutively did not show any ab-
normalities in the standard errors or the p values. Therefore, sufficient
data quality for the following analysis was estimated.

A split-sample approach was applied to calibrate and validate the
model. Prior to fitting the model, 20% of the pre-processed data were ran-
domly selected. This sample was used for validation while the model was
calibrated on the remaining 80% of the data points.

As the dependent variable can not assume negative values, the distri-
bution of the data points was strongly right-skewed for all crops and the
residuals were non-normally distributed, so the assumptions for a clas-
sic multiple regression on a normal distribution were violated. Therefore,
a generalized linear model based on a gamma distribution was fitted to
the data. The link function was assumed to be the natural logarithm, as
the data showed a normal distribution at the logarithmic scale. The model
was specified as followed:

Y ∼ Gamma (shape, scale) (1)

where Y is the response variable that follows a gamma distribution, shape
is the shape parameter of the gamma distribution (𝛼 >0) and scale is the
scale parameter of the gamma distribution (𝛽 >0). The expected value
(mean) of the response variable (Y) μ can be written as an expression of
shape and scale

𝜇 = shape × scale (2)

The log link connects μ to the linear predictor

g (𝜇) = ln (𝜇) = 𝜂 = 𝛽0 + 𝛽1 × x1 + 𝛽2 × x2 +…+ 𝛽p × xp (3)
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where 𝛽0, 𝛽1, 𝛽2, …, 𝛽p are the model coefficients (parameters to be es-
timated), x1, x2, …, xp are the predictor variables and p is the number of
predictor variables.

The model was fitted with a simple linear relationship and no interac-
tions. The categorical variables were coded as dummies. To assess model
fit, McFadden’s 𝜌2 was used, which is an alternative for R2 for non-normally
distributed data. The significance level was set at 𝛼 = 5%.

2.4. Yield Prediction Scenarios

Crop yields were projected under a worst-case scenario where the indus-
try suffers significant losses, employing a generalized linear model. This
assumes a global catastrophe that disrupts power supply, leading to the in-
hibition of industrial activities, communication, transportation, and other
electricity-dependent services. However, it was presumed that transporta-
tion remains feasible to a certain extent, allowing farmers to receive nec-
essary inputs and food distribution to continue.[70,71] While the triggering
event was expected to occur suddenly, the impact on agricultural produc-
tion was likely mitigated by existing stocks of inputs in storage. Conse-
quently, the aftermath of the catastrophe was divided into two phases:
phase 1 encompasses the initial year, during which stocks were still avail-
able, while phase 2 commences in the second year when stocks were de-
pleted, and the consequences of losing electrical infrastructure manifest
in their entirety. The datasets used to calibrate the model’s independent
variables were adjusted for predictions based on the assumptions of either
phase 1 or phase 2.

2.4.1. Phase 1

Phase 1 was meant to simulate the immediate stage after the catastrophe
that caused the global catastrophic infrastructure loss. phase 1 assumes
the following:

1) No irrigation reliant on electrical pumps.
2) Full mechanization persists due to the availability of fuel.
3) Reduced input of fertilizers and pesticides due to the cessation of pro-

duction, although remaining stocks were utilized.
4) Diminished availability of manure as animals were primarily slaugh-

tered to prioritize food resources, retaining only those suitable for agri-
cultural labor.

There should be enough fuel available to power agricultural machines
for another year. The International Energy Agency set the annual demand
of the agricultural industry in oil products at 111062 kt of oil equivalent
(ktoe) in 2018.[72] Available above-ground fuel after a global catastrophic
infrastructure loss was estimated at 319000 ktoe, encompassing 172000
ktoe of gasoline and 147000 ktoe of diesel.[71] Considering that most
agricultural machinery runs on diesel, the estimated stocks last for about
a year while leaving the gasoline for critical transportation. Thus, the
mechanization input dataset remains unchanged for phase 1.

Nitrogen (N) fertilizer application rates for phase 1 were calculated
based on the annual global nitrogen surplus.[73] This was done under the
assumption that not all fertilizer that was produced was used in the same
year. They project a surplus of 14477 kt N in 2020. In the first step, the
amount of the nutrient applied in each cell was calculated as a fraction of
the total amount of the nutrient summed over the crop-specific harvested
area with:

Nfrac =
Nfert × Acrop

∑
Nfert × Acrop

(4)

where Nfert is the application rate of the nutrient in kg ha−1 cell−1 and
Acrop is the crop-specific harvested area in ha cell−1. Each 5 arcminute cell
had a specific application rate for N and a specific harvested area for each
crop. The application rate was multiplied by the amount of crop area in

each cell to determine the total amount of N applied to that cell. Then,
this total was divided by the overall amount of N applied worldwide (the
sum of N applied in all cells).

This division gives a fraction, which represents the proportion of N ap-
plied to the entire world that each cell receives. In the first phase, when
only a reduced amount of N was available, this reduction applies equally
to each cell. So, if each cell used to apply 100 units of N under normal
conditions, during phase 1, they would only be able to apply 10 units of N
because of the 90% reduction.

Then, the new total amount of the nutrient was calculated available for
the specific crop Ntotal, crop in phase 1 based on the surplus reported by
the FAO (2017).

Ntotal, crop =
∑

Nfert × Acrop

TNG
× TNG1 (5)

where TNG is the total amount of the nutrient (NG = nutrient global) pro-
jected to be used for crop fertilization in 2020 and TNG1 is the projected
nutrient surplus in 2020. The total amount of N used for crop fertilization
is projected to be 118763 kt (FAO, 2017). Lastly, the new total is allocated
back to the cells based on Nfrac:

Nfert,1 =
Ntotal, crop × Nfrac

Acrop
(6)

The pesticide application rates for phase 1 were calculated with the
same approach as the fertilizer application rates. However, no data were
available on the production surplus of pesticides generated in one year.
Therefore, it was assumed that the surplus share of global pesticide pro-
duction was in the same range as the share of the nutrients surplus in
global nutrient production (≈10%). Equations (4) and (6) were formu-
lated accordingly for pesticides but remained structurally the same. The
new total of pesticides PEtotal, crop available for a specific crop in phase 1
was calculated as follows:

PEtotal, crop =
∑

PE × Acrop

TPEG
× TPEG ×

TnG1
TnG

2
(7)

where PE is the pesticide application rate in kg ha−1 cell−1, TPEG is the total
amount of pesticides used (PEG = pesticides global) for agricultural pur-
poses in 2019,[74] and TnG1 and TnG referring to the totals defined above
for nitrogen.

2.4.2. Phase 2

In phase 2 all stocks were assumed to be depleted, hence, mechanisation2,
nfert2, and PE2 were set to zero. Manure application rates were expected to
be the same for phases 1 and 2 as they were dependent on the available
livestock. It was assumed that the human population would switch to a
mostly vegan diet to use the calories that could be produced in the most
efficient way possible. Therefore, only draft animals like horses, buffaloes,
and cattle would be kept and fed on agricultural residues and roughage.
For this analysis, only cattle was considered, as horses and buffalos only
constitute a small fraction of global livestock and were not considered in
the datasets available.[63] To calculate new manure application rates, the
labor demand in each grid cell was assessed in terms of needed cattle
per grid cell by dividing the harvested area in each cell by the area that
could be worked by one head of cattle (ha per head of cattle), which was
assumed to be 7.4 ha per draft animal as a typical working capacity.[75]

Considering that modern cattle were not bred to work, this value could be
expected to be considerably lower. To be conservative in terms of manure
availability, 5 hectares per head of cattle was used. Next, the excretion rate
of one head of cattle was calculated. In the manure dataset[63] the total
amount of manure produced in 2014, which amounts to 131000 kt N and
the share of the manure produced by cattle, namely 43.7%. There were 1.44
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Table 2. List of Independent Variables Used in the Generalized Linear Model.

Variable Description Categorical/
Continuous

Unit/Categories

n_total Total nitrogen input (includes fertilzer
and manure input)

Continuous Kg ha−1

pesticides Cumulated pesticide input (contains
20 different substances, see
Table 1)

Continuous kgha−1

irrigation_tot Fraction of irrigated cropland per cell Continuous Unitless, values between 0 and 1

mechanized Use of agricultural machinery for
farming activities

Categorical 0 = not mechanized; 1 = mechanized

thz_class Thermal regime class Categorical,
dummy-coded

T1 = Tropics, lowland; T2 = Tropics, highland; T3 = Subtropics, warm; T4 =
Subtropics, moderately cool; T5 = Subtropics, cool; T6 = Temperate,
moderate; T7 = Temperate, cool, Boreal + Arctic

mst_class Moisture regime class Categorical,
dummy-coded

M2 = Length of Growing Period(LGP) < 120 days; M3 = LGP 120–180 days,
M4 = LGP 180–225 days; M5 = LGP 225–270 days; M6 = LGP > 270 days

soil_class Soil/terrain-related class Categorical,
dummy-coded

S1 = Dominantly very steep terrain; S2 = Dominantly hydromorphic soils; S3 =
No or few soil/terrain limitations; S4 = Moderate soil/terrain limitations; S5
= Severe soil/terrain limitations; L3 = Irrigated soils

billion head of cattle in 2014.[76] Multiplying the total amount of manure
with the fraction attributed to cattle and dividing the result by the heads
of cattle in that year rendered an excretion rate of ≈40 kg N head−1 yr−1.
In the last step, the new crop-specific N manure application rate Mn, crop
was computed by

Mn, crop =
39.77 × Ccrop

Acrop
(8)

where Ccrop is the crop-specific number of cattle in each grid cell. This
means that the available manure comes from the draft cattle needed to
labor the area in that cell.

For phase 1 Mn, crop was combined with nfert 1 into ntot 1. In phase 2 the
N from manure was the only source of N left, so it was taken as the sole
input.

As with manure, irrigation as a fraction of the cropland in a cell which
was actually irrigated could not profit from first-year stocks and therefore
the same values were used for phase 1 and phase 2. A sharp reduction
in actually irrigated areas was expected as large parts of the irrigation in-
frastructure were dependent on electricity and fossil fuels. Today, ≈20% of
cultivated land was irrigated and it contributes 40% of global food produc-
tion. To obtain the fraction of irrigated area, which was reliant on electricity,
the information on the source of the irrigation water (surface or ground-
water or other) was combined with country-level statistics. The fraction
of actually irrigated cropland in a global catastrophic infrastructure loss
(GCIL) scenario Igcil was calculated as follows:

Igcil = IAC × (1 − IRC) (9)

where IAC is the total currently (AC = all currently) irrigated fraction of
cropland in each cell and IRC is the fraction of currently irrigated area which
is reliant (RC = reliant currently) on electricity or diesel in each cell.

The datasets comprising the input variables for phases 1 and 2 were fed
into the model specified above to predict the crop-specific yields under
global catastrophic infrastructure loss conditions. The predicted values
were used to calculate the crop-specific relative change in yield RCC for
each cell:

RCcrop =

(
YPC − Ycrop

)

Ycrop
(10)

where YPC is the predicted crop-specific (PC) yield in the respective phase
1 or 2 and YCrop is the crop-specific yield around 2010 taken from the
SPAM2010 dataset. Values above zero, resulting from the generalized lin-
ear model, were set to zero as yield increase in a global catastrophic in-
frastructure loss scenario was not realistic. Rather, the positive values were
taken as an indication for stable yields unaffected by catastrophic circum-
stances. For the predicted yield and relative change, descriptive statis-
tics measures were computed for each phase and crop, namely the range
of values, the total crop production, the weighted mean, and the corre-
sponding confidence interval. The weighted mean was also calculated for
each continent. The yield was weighted according to the corresponding
harvested area while the relative change was weighted according to the
crop production in 2010. The results of and additional information on
these calculations can be found in reports/Report_descriptions.pdf and
reports/Prediction_statistics.xlsx in the repository of this paper[56]).

3. Results

3.1. Model Calibration and Validation

A generalized linear model based on a gamma distribution with
a log link was fitted for all crops using the same set of variables.
The final model for each crop incorporated the explanatory
variables listed in Table 2. Most coefficients had, as anticipated,
a positive impact on the expected yield, but the model struggled
to accurately capture low yield values. Nearly all coefficients
were statistically significant at a 5% significance level, except for
three instances: In the wheat model, the thermal regime level
2 was not significantly different from level 1 and the moisture
regime level 3 was not significantly different from level 2; in
the soybean model, the nitrogen input did not have a significant
impact. For soybean, nitrogen application was not a significant
yield influencing factor as it is a leguminous plant that is able to
fix nitrogen. Wheat is not a crop that is routinely grown under
tropical conditions. Therefore, it is reasonable that the different
tropical climates (T1 + T2, M2 + M3) result in similar yields and
do not show significant differences from each other. Further,
the thermal and moisture regime levels were combined due to
low numbers of data points in extreme climates. However, the
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Figure 1. Projected yield change based on the difference between the max-
imal and minimal value for all factors by crop. Colors indicate the crop yield
influence factor. This describes the maximum effect a single factor could
possibly have, when the other values are held constant.

same number of levels was used for all crops to ensure model
comparability between crops. Consequently, it does not reflect
the ideal number of levels for each individual crop: for wheat, for
example, the number of observations in T1 and T2 was very low,
so they could have been combined into one class. Nonetheless,
the separation was maintained to ensure consistency with the
models for corn, rice, and soybean.

We measured the total yield change per factor by compar-
ing the minimum and maximum input values while keeping
other factors constant (see sheet YieldReductionPerFactor in
reports/Model_results.xlsx) (Figure 1). This difference was ex-
pressed as a percentage of the maximum input’s yield, indicating
the extent of yield change when the respective factor was absent.
The most influential factor varied with the crop type. For corn,
irrigation caused a notable 40% yield decrease. Total nitrogen ap-
plication rate had the largest impact on rice and wheat yields, re-
sulting in a 45% reduction. In contrast, soybean yield was most
affected by the use of machinery, with a 36% decrease. Pesticide
application had the lowest effect, notably impacting only wheat
yields with a 39% reduction. Interestingly, rice yields showed an
unexpected relationship with pesticide application. The model es-
timated a yield increase of over 10% when no pesticides were
used (this is discussed in Chapter 4.1). Overall, irrigation had
the most substantial negative impact on yields for three crops,
followed closely by the use of agricultural machinery. Nitrogen
application had a varying impact, causing the highest reduction
for wheat and rice, while its effect on rice was relatively low (18%
decrease) and negligible for soybean.

To calibrate the models, 80% of the data points were used,
while the remaining 20% were reserved for validating the model
fit using McFadden’s 𝜌2. The validated 𝜌2-values exhibited strong
variation across different crops, with the highest agreement be-
tween data and model found for corn, yielding a 𝜌2 of 0.47. The
generalized linear model for rice achieved a 𝜌2 of 0.40, while the
wheat model obtained 0.36, and the lowest value was observed
for soybean at 0.32. Nonetheless, all validation values indicated a
good fit of the models to the data, as 𝜌2 values ranging from 0.2
to 0.4 represent an excellent fit.[77]

The detailed model results for each crop including a 95% con-
fidence interval for the coefficients and the corresponding good-

Figure 2. Projected yield reduction for phase 1 (some industrial inputs)
and 2 (no industrial inputs) by crop. Values are weighted by the production
of the cells (area times yield), as those areas are more important for food
security. Colors indicate the phase.

ness of fit metrics can be accessed in reports/Model_results.xlsx
in the repository of this paper.)[56]

3.2. Mean Predicted Yield and Average Yield Reduction in a
Global Catastrophic Infrastructure Loss Scenario

The predicted yields show significant variation between phases
1 and 2, as well as across different crops and continents
(Figure 2,3). In Phase 1, the average reduction by the crop is be-
tween 15% and 37%, while in Phase 2, it increases to values be-
tween 35% and 48% (Figure 2). Among all the crops, soybeans
experience the smallest reduction overall, especially in phase 1.
The reductions differ greatly between phases 1 and 2 for all crops
except rice. Rice yield reduction increases from 32% in phase 1
to 35% in phase 2. In contrast, soybeans perform relatively well
in phase 1 but experience a large decrease in phase 2 (from 15%
to 42% yield reduction). Both wheat and corn already exhibit sub-
stantial yield reductions in phase 1 (37% and 30% respectively),
which further worsen in phase 2 (48% for both).

The magnitude of yield decrease also varies significantly by
continent (Figure 3). Africa has the lowest average yield reduc-
tion, ≈26% over both phases, with little difference between the
phases. Asia also shows a small disparity between phases 1 and
2, but the average yield reduction over both phases is at 32% no-
tably higher compared to Africa. The difference between Phases
1 and 2 is more pronounced in the remaining continents where
yield decreases by at least two-thirds from Phase 1 to phase 2.
Europe and South America face a similar reduction of ≈25% in
phase 1 and 44% in Phase 2. With a projected decrease in yield
of ≈30% in Phase 1 and almost 48% in Phase 2, North America
and Oceania are most severely affected.

The detailed prediction results for each crop, phase and conti-
nent and, for comparison, also the metrics for the yield under cur-
rent conditions are provided in reports/Prediction_statistics.xlsx
in the repository of this paper.[56] For further information on all
plots presented in this work and their accompanying metrics, re-
ports/Reports_descriptions can be consulted.
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Figure 3. Projected yield reduction for phase 1 (some industrial inputs) and 2 (no industrial inputs) and all crops by continent. Values are weighted by
the production of the cells (area times yield), as those areas are more important for food security. Colors indicate the phase.

3.3. Spatial Patterns of Yield Loss

The predicted yield loss reveals distinct hotspots in corn
(Figure 4), rice (Figure 5), soybean (Figure 6), and wheat
(Figure 7). The severity of the impact is amplified in phase 2,
as the full repercussions of losing industrial inputs are felt. The
modeled consequences to this impact are notably diverse, with
regions showing heterogeneous patterns between pronounced
and minimal effects. This mirrors the heterogeneous distribu-
tion of small-scale and large-scale agriculture in these areas today.
When we consider the combined implications of these maps, it

becomes evident that significant agricultural regions, like Central
Europe, are anticipated to experience a substantial decrease of up
to 75% in their potential production of rice, wheat, soybean, and
corn. It seems likely that other crops, not modeled here, could
see similar reductions. This means the major growing regions
would experience a massive food shock, as they could lose the
majority of their food production in 1–2 years. These reductions
closely correlate with the current extent of industrialization
in agriculture. Less intensively cultivated areas exhibit milder
impacts, but they also tend to be less productive under current
conditions.
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Figure 4. Spatial distribution of yield loss for corn in phases 1 (some industrial inputs) and 2 (no industrial inputs) at a resolution of 5 arcmin.

3.3.1. Corn

The effects on corn production vary considerably between phase
1 and phase 2. In phase 1, only a limited number of regions wit-
ness significant reductions in crop yields, primarily in southern
India, southern Brazil, the Nile region, and the central USA. Dur-
ing phase 2, these regions experience even more pronounced de-
clines in yield. Additionally, we observe a substantial drop in corn
yield during phase 2 in Argentina, South Africa, Central Europe,
Ukraine, the Balkans, and northern China.

3.3.2. Rice

The geographical pattern of impacts remains highly consistent
between Phase 1 and phase 2. The most severely affected areas
include Southern Brazil, the Mississippi region, Southern In-
dia, the majority of China, and South-East Asia, as well as some

smaller regions where rice is cultivated in Europe and South
America.

3.3.3. Soybean

Similar to corn, soybean displays a significant contrast in its re-
sponse between phase 1 and phase 2. In phase 1, substantial yield
reductions are observed in only a few areas, primarily in the cen-
tral USA and southeastern China. However, in phase 2, these af-
fected regions expand significantly, encompassing most of the
growing areas of the USA, Brazil, and Argentina, and the soy-
bean cultivation in Europe, such as Austria.

3.3.4. Wheat

Wheat encounters a substantial decrease in yield during phase
1, particularly in the western USA, certain areas of Argentina,

Global Challenges. 2023, 2300206 © 2023 The Authors. Global Challenges published by Wiley-VCH GmbH2300206 (9 of 17)
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Figure 5. Spatial distribution of yield loss for rice in phases 1 (some industrial inputs) and 2 (no industrial inputs) at a resolution of 5 arcmin.

the majority of Central Europe, India, and China. However, this
worldwide decline in production worsens in phase 2, with sig-
nificant yield reductions occurring in all wheat-growing regions
except for the Mississippi region in the USA, specific areas in
South America, and Central Asia. This highlights both the gen-
eral importance of wheat, as well as how strongly wheat yield is
affected by the loss of the considered inputs.

4. Discussion

Following the first evaluations of the possible effects of a global
catastrophic infrastructure loss scenario on agriculture[31] this
work proposes a formal modeling approach to investigate the
issue, adds a spatial component to the analysis, and examines
global catastrophic infrastructure loss consequences on agricul-
ture in two different phases. Earlier research based on analyzing
existing literature estimated pre-industrial agricultural yield in

a global catastrophic infrastructure loss scenario, which corre-
sponds to a 60% drop from current yield levels.[31] The modeled
results here suggest that overall yields would drop by ≈35%–48%
depending on the crop in phase 2, with corn and wheat (−48% in
phase 2) experiencing the largest reduction., Areas with highly
industrialized agriculture are affected much more severely
and local yield reductions can reach 75% or more. However,
yield reduction after a catastrophe would likely be larger than
our estimate due to the lack of available data some relevant
factors (e.g., cultivars or seed availability) could not be taken into
account and most of the omitted factors would likely decrease
yield even more. Still, the general trends visible in the prediction
results are reliable and can be used as a guideline going forward.
They show that a scenario as described here would be the largest
threat to global food security which modern civilization has
experienced and that preparation is needed to avoid such a
catastrophe.
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Figure 6. Spatial distribution of yield loss for soybean in phases 1 (some industrial inputs) and 2 (no industrial inputs) at a resolution of 5 arcmin.

4.1. Implications of a Global Catastrophic Infrastructure Loss
Scenario

4.1.1. General Implications

The results demonstrate a substantial difference between phase
1 and 2 yield losses. It shows that Phase 1 can be critical in the
preparation for Phase 2 because the yield losses are more man-
ageable in the first phase. This can provide the time necessary
to adapt to the new circumstances by building up non-electrical
logistic infrastructure, building tools and wagons, establishing a
communication system, implementing new farming techniques
and crop rotations to manage pests and nutrients, and overall ad-
justing as a society. The crucial component is the continued use
of agricultural machinery as it ensures that tasks can be com-
pleted on large farms even as the preparations for the transition
to a human and animal-operated system are still underway. Fur-
thermore, the evolving global conditions will significantly shape

the eventual outcome of this situation. The persistent challenges,
often referred to as the “polycrisis,” entail simultaneous stress on
various systems.[78] This encompasses issues such as planetary
boundaries,[26] the destabilization of political landscapes, both
within nations and in international relations, and their impact
on the food system[79] and possible interactions between global
disruptive events.[80] The more severe this polycrisis becomes,
the greater the challenge will be to adapt to a worldwide catas-
trophic infrastructure breakdown as outlined here, since address-
ing sudden and global crises requires global cooperation to be
effective.[81]

4.1.2. Global or Regional Catastrophic Infrastructure Loss

One crucial factor to consider is the magnitude of infrastructure
loss. Various potential causes of infrastructure damage can vary
significantly in their scale. Additionally, the impact of these
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Figure 7. Spatial distribution of yield loss for wheat in phases 1 (some industrial inputs) and 2 (no industrial inputs) at a resolution of 5 arcmin.

factors can differ based on the geographic region. For instance,
in the case of a nuclear war-induced High-Altitude Electromag-
netic Pulse (HEMP), its effects are primarily concentrated on
the countries involved in the conflict and their neighboring
nations.[34] Similarly, geomagnetic storms tend to affect specific
regions, unless they reach very high magnitudes.[37,82] It is
worth noting that even regional disruptions can have profound
repercussions. Research has demonstrated that a substan-
tial disturbance in food production, centered around a major
producer on a continental scale, can have far-reaching global
consequences.[2,83] Furthermore, studies in natural hazards have
revealed that such disruptions often serve as the initial point of
a risk cascade, spreading impacts to areas and systems that were
initially unaffected by the shock.[84]

We center our attention on global effects, as this allows an
assessment of worst-case scenarios where a global disruption
impacts all regions simultaneously. Nonetheless, our analysis
highlights specific regions particularly susceptible to catastrophic

infrastructure loss on a regional scale as well. For instance,
the breadbasket of Central Europe or the USA would be very
vulnerable. In the event of a more regional catastrophe, these re-
gions would pose the greatest risk of triggering a global cascade
of adverse effects, as they are key players in global food trade now.

4.1.3. Potential Countermeasures

While the research shows that a global catastrophic infrastructure
loss scenario could potentially be devastating, this does not mean
that nothing can be done to prevent or mitigate the effects. Based
on our research and the existing literature, we have identified a
range of potential countermeasures.

Our findings clearly indicate that agricultural regions with re-
duced dependence on inputs such as fertilizers and pesticides
are less affected by infrastructure loss. This implies that incor-
porating more diverse agricultural practices aimed at reducing
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this dependency would enhance the resilience of the food sys-
tem, a perspective in line with existing literature.[1] Transition-
ing to approaches like smallholder farming, organic farming, or
sustainable practices such as permaculture could be beneficial.
However, it is important to acknowledge that these changes in-
volve trade-offs. Smallholder farming may render regions less re-
silient to local disruptions,[22] organic farming may require larger
land areas per unit of food production,[85] and permaculture may
demand substantial manual labor.[86] Thus, it is important to en-
sure that in seeking solutions, humanity does not replace one
problem with another.

An alternative path toward enhancing the resilience of food
production involves investigating resilient food sources that re-
main viable even in the event of an electrical grid failure. Early
research indicates the potential of various low-tech solutions, cur-
rently underutilized, such as nutrient extraction from leaves.[71]

The primary adverse effects of global catastrophic infrastruc-
ture loss result from damage to the electrical grid. If the power
supply fails, all other strategies for coping with a catastrophe be-
come more challenging. The most direct approach to mitigate
adverse consequences is to enhance the resilience of the phys-
ical infrastructure of the electrical grid against such incidents.
Some governments have already initiated steps in this direction,
as exemplified by the Obama administration’s directive to fed-
eral agencies and departments to coordinate their preparations
and responses to severe space weather events.[82] There is still
considerable work to be undertaken, and such measures may of-
fer limited assistance if the infrastructure is compromised due
to a cyber attack or insufficient maintenance during a major pan-
demic. Still, a robust infrastructure has been identified, as one of
the factors that may make collapse less likely.[87]

There are certain threats to the power grid that can be antic-
ipated, allowing for a period of forewarning before their actual
impact. This timeframe offers us the opportunity to proactively
fortify the grid and avert potential harm. Enhancing this warn-
ing period would increase the likelihood of effective preparations.
For instance, when considering solar flares, the most significant
ones necessitate the presence of a sunspot covering ≈10% of the
solar surface. Detecting such a massive sunspot early on is likely
feasible.[38]

For larger regional incidents and less severe global events, stor-
age can serve as a viable option to bolster resilience. It offers an
additional window of opportunity for electrical grid restoration
and food production recovery. Nonetheless, the global food re-
serves typically last a mere 4–7 months.[15] While increased food
storage can act as an emergency measure, it comes at a high cost,
potentially driving up global food prices and worsening current
food insecurity. Furthermore, numerous catastrophic scenarios
necessitate provisions for several years, posing substantial chal-
lenges in safely stockpiling such extensive quantities over ex-
tended durations.

Right now, the trade system exhibits vulnerability, as it is pri-
marily centered around a handful of main trading hubs, such as
the United States.[1,2] This concentration renders it vulnerable to
disruptions in the event of a major hub failure. Numerous stud-
ies emphasize the potential for a rapid disintegration of the global
food trade under such circumstances.[2,5,48] The mitigation of this
risk factor could be achieved through a more equal distribution of
food trade among nations. The same also holds true for the num-

ber of companies in the food sector. Right now the food system
is dominated by few, but very big international corporations.[88]

Smaller, but more dispersed companies might fare better after
global catastrophic infrastructure loss.

The safety of the food system is significantly shaped by how
societies respond to disruptions(social amplification of risks),[1]

particularly in the context of food export bans. Such bans have
the potential to set off a chain reaction, causing countries to halt
their exports out of fear that they will not be able to secure im-
ports in return. This disruption could result in food insecurity,
even when enough food still exists.[83,89] Another potential social
consequence of the disruption of the food system is civil unrest,
which could exacerbate problems.[89] Pre-established agreements
between nations and emergency plans in countries on how to ad-
dress such scenarios could enhance the likelihood of better out-
comes.

4.2. Limitations

Our results provide the first spatially explicit estimate of the ef-
fects of a global catastrophic infrastructure loss scenario on crop
yield. The spatial pattern of yield loss corresponds with the an-
ticipation that highly industrialized agriculture would be most
severely affected. Further refinement of these findings is recom-
mended for future research. On a global scale, achieving a better
estimate is mainly limited by the availability of new, more accu-
rate datasets. Hence, this study likely offers an accurate global
estimate attainable with current data.

4.2.1. Limitations in the Available Data

The datasets do not directly reflect the true distribution of specific
variables but instead offer a statistical approximation obtained
through downsampling. This introduces uncertainties that are
consequently mirrored in our model’s output.

The datasets used in this analysis are not harmonized, only
some applied standardization against country-level FAOSTAT
data. Consequently, the layers do not perfectly align, differing
in both their extent and spatial distribution. These discrepancies
in extent result in missing data points within the consolidated
dataset used in the analysis. Notably, the mechanized and pesti-
cide datasets cover significantly fewer cells than others, particu-
larly in Africa. This necessitated the removal of many cells before
calibrating the model, especially in Africa, as some of the data
is more uncertain there[57] (Additional information on the data
cleaning process and the effect of each operation on the metrics
of the datasets can be found in reports/Report_descriptions.pdf
and reports/Descriptive_statistics.xlsx in the repository of this
paper[56]). Despite the exclusion of many cells during model
calibration, the remaining data still largely represent the main
growing regions and the majority of annual crop production for
each crop.

Due to limited data availability, some factors, which are es-
sential for estimating yields in a scenario of global catastrophic
infrastructure loss, were omitted from the generalized linear
model. These factors include seed availability, the dominant crop
varieties, and farmers’ knowledge, accessibility of feed for draft
animals, tools and materials for agricultural work, the health of
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draft animals, population displacement, climatic changes, alter-
native pest control methods, crop rotations, alternative sources of
fertilizers, food preservation methods, and the time required for
animal slaughtering. All these factors and aspects have the po-
tential to either enhance or diminish crop yields in a scenario of
global catastrophic infrastructure loss. However, most are likely
to exacerbate the catastrophic impact.

Among these factors, the three most significant are seed avail-
ability, the dominant crop varieties, and farmers’ adaptability to
a significant shift in production techniques. Seed availability and
the prevalence of specific crop varieties are closely intertwined.
Many farmers, particularly in industrialized nations, purchase
seeds from large global corporations rather than saving seeds
from their own harvests. While this practice can be altered if nec-
essary, these varieties are often bred to excel under high-input
conditions and are designed for repurchase. This does not imply
that these seeds will not grow or perform poorly under low-input
conditions, but they are more susceptible to crop failures com-
pared to local landraces.[90]

In the event of a global failure of electrical infrastructure,
highly specialized and industrialized plant breeding and seed
production would likely be disrupted. Corn, in particular, would
be severely affected, as the majority of corn crops are grown from
hybrid seeds specifically engineered for high one-year perfor-
mance. If seeds from large companies become unavailable and
saved seeds from high-yielding varieties perform inadequately in
the scenario of global catastrophic infrastructure loss, there may
not be enough landrace seeds to cultivate the entire current crop-
land area.

Transitioning from highly mechanized agriculture to tradi-
tional farming methods could pose a challenge for many farmers.
However, some small farms still employ traditional knowledge,
serving as valuable resources for re-educating farmers in these
traditional techniques.

4.2.2. Limitations in the Model

The fitted models face challenges in accurately capturing yields
in areas where the yield is already very low today and tend to
estimate a more moderate range of values than the training
data, particularly for low yields. The minimum yield prediction
by the model is higher than the observed minimal yield in the
SPAM2010 yield dataset. It suggests that lower yields are only
marginally, if at all, negatively affected by global catastrophic in-
frastructure loss. These are areas where very little external inputs
like fertilizers are used today, which would make them less af-
fected by infrastructure loss. Reasons for the inadequate model
fit on lower yields could include data misalignment, the particu-
larities of the selected link function, and the omission of relevant
variables.

Notably, for rice and soybean, the models estimated a negative
relationship between agricultural input and crop yield, which is
unexpected. For soybeans, the negative effect of nitrogen applica-
tion on crop yield is not statistically significant and is not a cause
for concern, given soybean’s ability to fix nitrogen from the air.
However, the stronger, statistically significant negative effect of
pesticide application on rice is surprising. The inaccurate map-
ping of the relationship between rice and pesticide application
could possibly be influenced by data misalignment, data qual-

ity variations in different growing regions, and calibration on
smaller units.

4.3. Recommendations for Future Research

Moving forward, future research should focus on:

i. Enhancing the accuracy of the estimate by refining the sta-
tistical methodology used here, or by combining a statisti-
cal framework with machine learning methods, or process-
based crop models.

ii. Including data for missing factors such as seed availability.
Additionally, data with the same resolution (5 arcmin in this
study) should be collected instead of downsampling from
country-level data. By incorporating more precise and com-
prehensive datasets into this analysis, its accuracy could be
improved.

iii. Exploring resilient food options that could serve as viable
alternatives to conventional food production in the event
of global catastrophic infrastructure loss. For instance, sea-
weed, which has demonstrated promise following other
global catastrophes,[47] may also prove beneficial in this con-
text due to its ability to thrive in low-tech cultivation. Also,
leaf protein concentrate can be produced at the community
scale.[91]

iv. Estimating the scale-up capability of hand/animal tools, as
well as wood chipping and gasification to provide fuel for
equipment. This paper assumes that the production and
distribution of such tools are possible. Without these tools,
yield losses would be higher.

v. Investigating backup communication systems to facilitate
coordination and production of food and other necessities
after the catastrophe.[42]

vi. Developing comprehensive disaster-specific preparedness
and response plans for each country. This includes identify-
ing potential food sources, determining the optimal regions
for cultivation, and optimizing food distribution strategies
to ensure the nutritional needs of all citizens are met. Such
a plan has already been created for Argentina in preparation
for a nuclear winter.[92]

vii. Analyzing potential yield loss for different food crops. The
crops outlined in this study account for ≈60% of the total
food required for human consumption, it remains relevant
to investigate the fate of the remaining 40%.

viii. Gathering insights on the response of the economic system
to a global catastrophe. The research presented in this con-
text operates under the assumption that global trade largely
ceases due to the unavailability of transportation means,
while the distribution of fuel, fertilizer, and pesticides re-
mains possible. The persistence of long-distance trade net-
works could mitigate many of the challenges outlined ear-
lier. Therefore, gaining insights into how the economy and
trade might adapt becomes highly valuable, enabling the
development of strategies and safeguards to facilitate trade
even in the wake of a global catastrophe. There have been
the first studies to understand agricultural economics af-
ter other global catastrophes like nuclear war[93] and how
climate change could change trade communities.[29] Such
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models could potentially be adapted to the scenario explored
here.

ix. Analyzing specific regions, especially in the identified
hotspots and within Africa, could offer valuable insights. In
the regions facing the most severe impacts, it might be ben-
eficial to examine the results at the country level to provide
recommendations at that scale.

5. Conclusion

The food supply chain faces significant vulnerability due to the
potential for global catastrophic infrastructure loss. In this study,
we have refined prior assessments by conducting a spatially ex-
plicit global analysis of the potential reduction in crop yields re-
sulting from the loss of essential inputs such as nutrients, mech-
anization, irrigation, and pesticides. This analysis reveals that
such an event would significantly disrupt food production. On
average, we anticipate a roughly 40%–50% reduction in current
crop yields when fertilizer and nutrient stocks are depleted. Re-
gions with high levels of industrialization, such as Central Eu-
rope, may experience even more substantial declines. It is impor-
tant to note that our assessment may underestimate the full ex-
tent of potential consequences, as we were unable to consider var-
ious critical factors like seed diversity, scale-up capability of tools
needed for less mechanized agriculture, and farmers’ knowledge
due to data limitations. Nevertheless, it is important to recognize
that we do have options and can take action to address this chal-
lenge.

We have also identified a range of potential countermeasures,
including the diversification of agricultural systems to reduce
dependence on international trade and enhance local food self-
sufficiency. Implementing these measures is likely to enhance
the resilience of the food system against the disruptions explored
in this study. Furthermore, we have pinpointed areas for future
research. Creating new datasets likely constitutes the most im-
pactful step to improve model accuracy. Better data can help to
bridge the knowledge gaps regarding missing factors and to gain
a deeper understanding of how both, the global food trade and
production systems as well as the economy, would react to such
a substantial shock.

Finally, countries can enhance their resilience to the men-
tioned catastrophes by formulating preparedness and response
plans. These plans should explore how a particular country can
utilize its resources to adjust to post-catastrophe conditions.
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